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ABSTRACT

Requirements for submarine periscope depth operations have been increased by
integration with carrier battle groups, littoral operations, and contributions to joint surveillance.
Improved petiscope depth performance is therefore imperative. Submatine control personnel
rely on a large number of analog gauges and indications. An integrated digital display system
could enhance the ergonomics of the human control interface and display additional
parameters. This thesis investigates the required feedbacks for robust automatic deptfl control
~ at periscope depth, and thus indirectly determines the additional parameters desired for an

integrated display.

A model of vertical plane submatine dynamics is coupled with first and second order
wave force solutions for a particular submarine hull form. Sliding mode control and several
schemes of state feedback are used for automatic control. Head and beam seas at sea states
three and four are investigated. ‘The automatic control effectiveness provides insight into the
indications used by the ship's control party in operations at petiscope depth. One possible
display system is proposed, with several additional enhancements to improve ship's safety,
reduce operator fatigue, and enable accurate reconstruction of the events leading to a loss of

depth control.
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I INTRODUCTION

A. GENERAL

The need for attack submarines to operate at periscope depth has been increased by
integration with carrier battle groups, operations in the shallow littoral, and contributions to
joint surveillance.

Operating at periscope depth beneath a seaway, a submarine is in an unstable
condition. As the free surface is approached, the seaway forces increase, trying to pull the
submarine to the surface. To counter these forces, the ship’s ballast is changed and control
surfaces are used. Because of the seaway's stochastic nature, manual operation for long petiods
at periscope depth taxes the ship’s control party.

Operators must remain aware of the environmental conditions. If the sea becomes
quiescent, the submarine will sink out. If the sea suction forces are greater than the ballast and
planes authority, the submarine will broach the free surface increasing detection risk by several
orders of magnitude. Other events, like temperature or salinity changes, can also have major
effects on reliable depth keeping. Contributing to the environmental issues, the need to use
minimum speed for a given sea state to control the detectable mast feather reduces the
available planes authority, and increases the difficulty of depth control.

However; the current submarine force is not optimized for these operations. One
inexpensive area for improvement is the display system for the ship’s control party. Modern
digital display systems offer ergonomic improvements over current gauges and readouts.

Given a requirement to conduct submarine ship control manually, a fundamental
question is that of how to display the state of the ship to the operators. Aside from the
obvious indications like ship’s pitch angle, depth, and control surface positions what else would
be useful? Candidates include the net force acting on the ship, accelerations, and various time
averaged values. Implied in this is that a nontraditional means of display will be used to show
these parameters, so that the operators will not have to rely on a2 number of gauges or meters,
with averaging of results only available only by the calibrated eye.

An intelligent assistant to the ship’s control party would show items of current
concern, and issue alerts based on an operator programmable doctrine. Issues like mast
exposure, ship’s relationship to the bottom, and trim state could be shown in an intuitive,

logical manner.



Current evolutions and other items relating to the tactical employment could be included as

required.

B. AIM OF THIS STUDY

Although the ship’s control party currently relies on a small number of indications, the
ability to sense “by the seat of the pants” cannot be discounted. This thesis investigates
required feedbacks for robust automatic depth control at periscope depth, and thus indirectly
evaluates the additional indications to be added to an integrated display.

This approach assumes that the best ship’s control parties already use system states for

control which are not explicitly displayed.

C. THESIS OUTLINE

Chapter II contains the development of the deeply submerged submarine dynamics
model. Chapter I1I gives the development and source of the wave forces used to simulate
operations at periscope depth. In Chapter IV, optimization studies are performed for nine
different cases of state feedback control. This gives a feeling for the quality of depth control
achievable by the use of different levels of sensors. Chapter V. explores the use of sliding
mode control for periscope depth operations. In Chapter VI, current ships control technology

is reviewed and an integrated display is proposed. Conclusions and recommendations are

given in Chapter VIL



II. SUBMARINE DYNAMICS MODEL

A. INTRODUCTION

When a submarine is deeply submerged, many of its maneuvering characteristics can
be determined from application of Morison’s equation to model test data. A series of trials,
often done with a planar motion mechanism (PMM), give the damping and inertia coefficients
for small maneuvers in each of the six degrees of freedom. This method is not without limits.
For trials done in the horizontal and vertical planes only, ndnlinear cross coupling effects are
ignored. The hydrodynamic coefficients wotk pootly for prediction of high speed maneuvers
and control surface casualties. Here the large crossflow velocities, vortex hull interaction, and
flow separation all have effects which are not predicted by the hydrodynamic coefficients. Itis
possible, however, to include some of these effects as additional nonlinear terms.

As the submarine approaches the free surface, several complexities are introduced into
the hydrodynamic coefficient approach. First, the inertia terms change as an acceleration will
no longer act upon an effectively infinite region. Second, an inviscid form of damping exists
near the free surface. This comes about from the generation of waves by the body, and
depends on the body depth and character of motion. Finally, the interaction between the
incident waves and the submarine introduces added forces and moments. These effects
combine to make designing for periscope depth vexing for engineers and operating at
petiscope depth an art for the ship’s crew.

The approach in this thesis will be to first establish a dynamics model appropriate for a
deeply submerged submarine at low to moderate speeds. The forces and moments resulting
from the seaway will then be superimposed on this model to provide a reasonable

approximation to the submarine motion beneath waves.

B. DEEPLY SUBMERGED EQUATIONS OF MOTION

1. Definition of coordinate system and states

The coordinate system defined in Figure 1 will be used. The origin of the global
cootdinate system is fixed at the ocean surface. The g axis is positive downward, towards the
ocean bottom. The x axis is positive in the direction of intended submarine motion. The body

fixed coordinates are rotated from the global coordinates by the angle 6. Body fixed velocities



w (heave) , # (surge), and ¢ (pitch) are shown. The control surface deflections, 8, (bow planes)

and 8, (stern planes) are also defined.

Ocean Surface

Z.g

w

Figure 1. Coordinate System Definition

2. Hydrodynamic coefficients review

For a deeply submergedl submarine, small motions can be analyzed using the concept
of hydrodynamic coefficients. These represent a Taylor series expansion of the functional
relationship between body movements and the resulting fluid forces. For example, given the
deeply submerged body in Figure 2 undergoing pure heave, resulting body forces can be

expressed in the following manner:



Figure 2. Submerged body in pure heave

M=Mw+ My wwl+ M w )

Z=Z,w+Z wwl+Z, W )

This method is extended to the six degrees of freedom of the body, and done for
velocity and acceleration components of the movement. This includes representations of
added mass, viscous drag, and square law drag.

3. Vertical plane equations of motion

By using this system of notation, and applying Newton’s second law to the body fixed
coordinates, and transforming to global cootdinates, the equations of pitch and heave may be
obtained in the vertical plane. The general case is quite complex, having centers of mass and
buoyancy that are separate from each other and the coordinate system origin. This, along with
cross coupled hydrodynamic coefficients, results in a nonlinear, coupled set of differential
equations.

These equations of pitch and heave may be simplified considerably by several
reasonable assumptions. Assuming that the submarine motion is constrained to the vertical

plane, the equations of motion for heave and pitch are (Smith, Crane, and Summey (1978)):

mlw—uq - x4 —26q9°]= 3
Z,g+Z,w+Zug+Z,w

+u*(Z5,8, +2Z586,)



I).q—m[xc(w-uq)—zc(ﬁ+wq)]= 4
Mg+ M, w+ M ug+ M, uw
+u’ (M58, + Ms9,)
—(xgmg — xgB)cos(6)
—(zgmg —23B) sin(6)

It is apparent that Equations (3) and (4) are nonlinear, coupled differential equations in
wand g and #. To reduce this coupling, terms involving the desivatives of wand ¢ can be

collected, resulting in 2 mass matrix.

_ {m-— zZ, -Z, ] 5)
M=
- MW 1), - M(]
The mass matrix can be readily inverted:
1,-M;, Z, ©
—_1 MW m‘ZW )

Tm=Z,)U,-M)-Z;M,,

By applying Equation (6), the cross coupling of terms in wand ¢ can be removed
from Equations (3) and (4). To allow the introduction of external forces and momen‘ts, the
system was augmented by force and moment disturbances acting at the otigin of the body
fixed coordinates. They were multiplied by the cosine of the pitch angle for conversion to the
body fixed coordinate system. These disturbances can be used to input external effects, such
as changes in trim and wave forces. By further assuming that the center of buoyancy is at the
body fixed coordinate system origin, the center of mass is directly below, and that the forward

speed  is constant, the equations of motion can be reduced to the following:

W= ay uw +aj,ug + a3 sin() +by,u’8, +b,u’8, + F, cos(6) + €1,9° +e,qw ™)
G = ayuw + ayuq + a,; sin(0) +by u?8, +byu’S, + M, cos(8) + €919° +epqw 8
6=g ©)

z=wcos(0) - usin(6) (10)

x = wsin(8) + ucos(8) (11)



where:

_Z,d,- M)+Z,M,
a, = (m-Z;v)(I". - Mq)—Z‘?MW

2 - M)+ Z,M,
2T m-zZ ), - M)~ Z,M,

M, Z,+(m-Z,)M,,

ap = (m_ZW)(]‘ — Mq)_Zqu

_ M. (Z, +m)+(m—-2Z,)M,
S =z, - M- ZM,

_ Zqzcmg
M= m-Z (1, - M)~ Z,M,,

Q.. = (m—Z2,)zmg
2 (m=-Z)I,-M))-Z,M,

(I, -M)Zy +Z,M,
N -z, - M) -2 M,

. M.Zs +M;(m-Z,)
1 m-Z)1, - M)-Z;M,

_ (I, -M)Zs +Z; My
12 = (m=-2)1,-M)-Z,M,

M,Zs + My (m=Z,)
T m=z), - M)-Z,M,

b22

_ (I,-M;)zm
= (m—ZW)(I", —Mq)_Zun

€n

= Z;zgm :
€y = (m-Z)1,-M)-Z,M,

e = M, z;m
21 (m=-Z)I,-M)-ZM,




(m—-2Z,)z;m

€n =
(m=-Z,)1,-M)-Z,M,

Equations (7) through (11) are the governing equations of motion for this thesis. Itis

of note that the disturbance force and moment terms represent accelerations due to the

disturbances. To provide ease of use, the equations of motion were implemented in the

SIMULINK® model shown in Figure 3. This building block approach was very effective for

conducting studies on the effectiveness of different types of controllers.

~ Net local
disturbance vector

Control Surfaces Control
Matrix

Block info and requirements

AX nl +IIH+—-

Output
State Vector

xdot
nonlinear

Figure 3. SIMULINK® model of vertical plane submarine dynamics

For control design, it is convenient to use a linear state space representation of the

system. This allows the use of a variety of controller design tools including pole placement and

linear quadratic regulator algorithms. Equations (7) through (11) can be linearized about a level

flight condition. This results in the linear state space representation:

W=a;uw+a;uq +a,,0+by,u’8, +bu’8, +F, (12)
G = ayuw +ayug +ay0+byu’s, +byu’S + M, (13)
6=g 14)

z=w—ub (15)

x=wl+u (16)



Equations (12) through (15) can be rewritten in matrix form. This form of the linear
submarine vertical plane dynamics equations will be used for controller design. For controller
design, Equation (16) was excluded from the matrix form. Because of the constant forward

speed # assumption, there was no direct means of control for x.

w] [ayu apu ay Ofw| [bu® byu® F, (17)
q.. _ axu axnpu axp Ol g + b21u2 bzzuz |:6b]+ Md
] 0 1 0 o6 0 0 |6 0
F4 1 0 u 0fz 0 0 0

C. EXTENSION TO VERTICAL PLANE PATHKEEPING
Equations (7) through (10) and the corresponding SIMULINK® model are lineatized
around 2 constant commanded depth, or level flight. They can be extended to a two

dimensional pathkeeping simulation by a coordinate transformation. After coordinate rotation

by an angle B (positive in the same direction as6), the resulting system is:

W= a,uw+a,ug+al,sin(@’)+bu?s+ F, (18)
g = a,uw+ay,uq+ay,sin(0’) +bu*s + M‘,, (19)
6'=q (20)
2’ =wcos(8”) — usin(0”) , 1)
# = wsin(8") +ucos(6") 22)

where:
o=6-8 23)
x'= ~zsin(B) + xcos(B) (24)
z' = zcos(B) + xsin(B) (25)
s @9)
ay, = ay,c08(B) @7



Fd’ = F, +a,, cos(8")sin(B) (28)

Md, = M, +a,,cos(8")sin(f) @)

If the expected angular deviation from the planned path is small, Equations (28) and
(29) can be simplified by assuming that cos(8”) is equal to one. Then the rotated equation set,
Equations (18) through (22), is identical in form to Equations (7) through (11).

Equations (23) through (29) allow any vertical plane path consisting of a series of

straight line segments to be simulated one segment at a time.

D. THE DARPA SUBOFF

1. Background

For the purpose of this work, it was desired to have a vertical plane model of
submarine dynamics which would give a similar response to a2 modern fast attack nuclear
submarine (SSN). Several sets of unclassified hydrodynamic coefficients were available, these
being for the swimmer delivery vehicle (SDV) detailed in Smith, Crane, and Summey (1978)
and for the DARPA SUBOFF model detailed in Roddy (1990).

The SDV had a very complete set of hydrodynamic coefficients which have been used
in a large number of Autonomous Underwater Vehicle (AUV) research projects. Among these
is the Naval Postgraduate School (NPS) AUV sliding mode controller, Hawkinson (1990).
Despite these advantages, the SDV hydrodynamic coefficients were not used because the wing
like hull of the SDV bore little resemblance to an axisymetric submarine hull.

The SUBOFF hydrodynamic coefficients detailed in Roddy (1990) lacked some of the
cross coupling coefficients. The documentation also lacked details on the models metacentric
height. Because the SUBOFF represented a submatine hull form and most of the vertical
plane coefficients and parameters were available, it was chosen as the model for this thesis.

2. SUBOFF known parameters and coefficients

The SUBOFF was developed to allow comparison between flow field predictions and
model test data (Roddy, 1990). The available coefficients were based on'planar motion

mechanism tests conducted on the model.
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Because the aim of the study was to examine full scale submarine motions, the model
and its hydrodynamic coefficients were scaled to a length of 300 feet. After scaling, several
parameters had to be modified or assumed to give control and response comparable to a
modern fast attack submarine. The force coefficients of the stern planes was doubled to
provide a more realistic level force. Bow planes were assumed to have one half the force and
one quarter the moment authority of the stern planes. Finally, 2 metacentric height of one foot
was assumed, as it provided a realistic point of stern planes reversal. The resulting parameters

are shown in Table 1.
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Parameter SUBOFF Model Scaled / Modified Result
Length (Feet) 14.2917 300
Displacement (tons) 0.7704 7,7145
Maximum Diameter (Feet) 1.667 35
Metacentric Height (Feet) Not Provided 1
XG 0.00975 0
zG Not Provided 1
XB -0.006669 0
ZB Not Provided 0
Z; -0.005603 -0.011206
Mj -0.002409 -0.004818
Z; Not Provided -0.005603
M éb Not Provided 0.0012045

Table 1. SUBOFF Assumed and modified parameters

E. CONCLUDING REMARKS

A simplified model of submarine vertical plane dynamics was derived. The coefficients
for use in this model were obtained from the DARPA SUBOFF model, which is a
representative axisymetric submarine hull form. The simplified nonlinear equations of motion

were incorporated in 2 SIMULINK® model to allow easy integration with wave force models

and different controllers.
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III. WAVE FORCE MODELING

A. INTRODUCTION

As a submarine operates near the free surface, it encounters complex forces which may
cause unsatisfactory or unstable depth control. The lift and moment from incident waves
increase in an exponential manner as the surface is approached. To maintain a desired depth,
the ship’s ballast is adjusted to counteract steady forces. Control surfaces are used to counter
dynamic changes. A small depth excussion or change in forces can overwhelm the planes and
cause 2 loss of depth control. The consequences range from losing radio reception to
compromising the ship’s mission.

The effects of incident waves on a submerged body can be divided up in several
categories. The largest, the first order forces act at the incident wave frequency. These forces
move the submarine, but usually result in oscillations about a mean state. Second order forces,
which are the result of wave diffraction and wave interaction, have several different frequency
components.

Wave diffraction of a single frequency wave results in a steady force and 2 varying
force at twice the wave frequency. The double frequency force is typically neglected, as the
large inertia of the submarine effectively filters it. Interactions of waves at different
frequencies also results in forces. These consist of a component acting at the sum of the wave
frequencies and a component acting at the difference of the wave frequencies. The sum
frequency force is typically neglected, as it is also filtered by submarine’s inertia. The difference
frequency component results in a slowly varying force on the submarine.

The slowly varying forces are the principle cause of difficult periscope depth control
(Ni, Zhang, and Dai, 1994). They are compensated for using control surfaces and occasional
adjustments of trim.

During the design phase, engineering decisions are made which will determine the
ship’s ability to remain at periscope depth. Of these, the most critical are the height of the sail
and control surface sizes. Every foot added to the sail gives a deeper periscope depth. Larger
planes improve the operator’s ability to compensate for changes in suction forces. However,
these improvements are not without cost. The sail and other appendages are a large fraction of
the total drag, and can restrict the ship’s top speed. Larger movable control surfaces can

adversely affect the high speed casualty recoverability (Jackson, 1992, p. 15-9).
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The goal of this thesis is not to provide new tools for the designer, but rather new
means to enhance control for the operators of current submarines. Due to this focus,

simplified means of modeling the wave forces for a few specific cases will be used.

B. REVIEW OF LINEAR DEEP WATER WAVES

The pertinent features of linear deep water waves will be reviewed to provide
background for the following sections. The coordinate system used for the examples is shown
in Figure 5. For the examples in this section, it will be assumed that the submarine is oriented
with the bow pointing into the page. Consistent with the global coordinate system from

Chapter II, the distance from the surface to the submarine centerline is z. The submarine

diameter is D.

Wave speed,C

\ H: i ™~ y /—
L\/__L j |
- l

Surfoce elevation -‘(@-—D d

shown at t=0

Figure 5. Coordinate Definition for plane progressive wave, adapted from Sarpkaya and
Isaacson (1981, p. 151)

For a wave of wavelength L, a wave number, £, can be defined.

b (30)
L

Assuming that fluid is incompressible and inviscid Laplace’s equation can be applied.

1t is thus desired to find a solution to:

2 2 31
u+§_¢.—0 ( )
x? o’

To this, the boundary conditions at the free surface, and the bottom must be applied:
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_ig =0 ,at z=d (no flow through ocean bottom)

%7—+ g%%: +—3% =0 ,at z=7 (zero velocity normal to ocean surface)

d 1](30) (3¢}
R

For small amplitude waves in deep water, the following solution can be obtained

(adapted from Sarpkaya and Isaacson, 1981, p. 159):

¢ = '—%e"“ cos(mt)

kz

Cf = w—Izie' sin(wt)

.. H
= w? --2—63"‘Z cos(wt)

H

_kz .
—e " sin(ot
> (1)

§=_

. H
E=-0 7e"‘z cos(wt)

H
—2'6""2 sin(cr)

D c-o
»
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(40)

(41)
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where 7 is the distance from the surface to the average level (z2=0), @ is the angular

frequency of the incident wave, {is the displacement of a particle in the x direction, and &

is the displacement of a particle in the z direction.

A key parameter in oscillating flows is the Keulegan-Carpentet number:
UpeaT (45)

K - mean

D

where U, is the average velocity across the characteristic dimension D.

mean

By taking the average of the velocity given in Equation (40) , and substitution into

Equation (45), the expression for the Keulegan-Carpenter can be reduced to the following:

2H . . (46)

Equau'oﬁ (46) is the Keulegan-Carpenter number based on the cross flow velocity of the

undisturbed wave at the same depth as the centetline of the submarine hull.

C. WAVE FORCE REGIMES

There are different regimes of interaction between a submerged body and a wave field.
Broadly, they can be broken into several areas. Inertial interaction, where the body acts like a
particle in the wave field. Wave diffraction, where the bodies influence upon the wave field is
accounted for. Finally, there are flow separation (viscous) effects. The relative importance of
cach of these effects can be determined by examining the relationship the body size to the

wave parameters. (Sarpkaya and Isaacson, 1981, pp. 381-386)
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Figure 6. Wave force regimes (Sarpkaya and Isaacson, 1981, pg. 385)

To estimate the significant effects for a typical SSN, a typical operating condition is

assumed. For a 300 foot submarine with a 35 foot diametet, a typical periscope operating

depth would be about 50 feet from the centetline of the ship to the free surface. Using average

values for sea states three and four and assuming deep water compared to the wavelength, the

following quantities were calculated at a depth of 50 feet:

Parameter Sea State 3 Sea State 4
Significant Wave Height 3 6
Average Period 6.623501 7.154522
Wave Length 224.6467 2621114
Wave Number 0.027969 0.023971
K 0.042339 0.103414
D/L 0.1558 0.133531

Table 2. Estimated Wave Loading Parameters

The Diameter/Wavelength (D/L) ratios and the Keulegan-Carpenter numbers of

Table 2 show that for the sea states of interest, wave diffraction much more significant than

viscous forces. It can be concluded that an inviscid analysis should give good results for the

wave forces. However, this is only rigorous for an unappended hull, as the control surfaces

and sail on an actual submarine will experience viscous effects.
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D. SOLUTION FROM SLENDER BODY THEORY

Wave force solutions for several specific cases were generated for the SUBOFF by the
SSBN Secutity Department of the Johns Hopkins University Applied Physics Laboratory. A
slender body solution with some three dimensional corrections was used. The specific method
used for the generation of the first order motions and second order forces is detailed by O’Dea
and Barr (1976, pp. 7-25).

A seaway approximation consisting of a small number of regular waves was used to
model sea states three and four. For each sea state, the resulting data were separated into two
categories. The effects of the first order forces were given in terms of body motions. The
effects of the steady second order forces and the difference interaction forces were provided in
pounds force.

1. Seaway model

A random seaway can be represented by the superposition of a large number of regular
waves. The seaway was approximated by superimposing # regular waves. The frequency and
height of these waves was determined using the Bretschneider spectrum. It gives the spectral
density in terms of the significant wave height, H,, and the peak frequency, @, . |

sz |42 0

(@) = 6w, (@ 0,)°

To model sea state three, a significant wave height of three feet was used, with a central

frequency of 0.836 radians per second. This results in the following spectrum:
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Figure 7. Example Sea State three spectrum

Figure 7 gives a statistical picture of the seaway, but is not immediately useful for time
domain simulation. One way to obtain a time history is to represent this stationary process as

a the sum of a series of sine waves:

y 48
77(‘)=ZA; sin(w;t + ;) (48)

i=1

Where A, is the amplitude of the # wave , and g;is its randomly chosen phase angle.

If the number of sine waves is reasonable large, and the frequencies and amplitudes of
each component are chosen to achieve the same energy as the section of spectrum it
represents, Equation (48) will give a good representation of the ocean surface.

The method chosen was to divide the spectra into n segments of equal areas. This

results in n sine waves all with equal amplitudes. Integration of Equation (48) yields:
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r H?, (49)
_([ St@)do ==+

Because the spectrum extends to infinity, it was chosen truncate the spectrum at a
point where the area was a fraction C of the total area. The amount of area to be represented
by each sine wave is equal to its mean square value. So the amplitude of each sine wave is

equal to the square root of the area it represents times the square root of two.
H, [C (50)

A’,—;__-"- —_

2 ¥V2n

Equation (48) can be integrated up to some frequency @, , which represents the

frequency at which the spectral area is equal to iC/n times the total area.
@ 2 (51)

[s@do="121c
16 n

‘ (52

Because the spectral level is insignificant below @ equal to 06w, , the frequency if the

first segment was determined as follows:

(06w, + @) (53)

The remainder of the frequencies were determined by taking the midpoint of the

frequencies at either side of the area segment.

54

o, + W, ,
w,-:—'—’-i——’—,forz=2to n
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Figure 8 illustrates the method used, approximating the spectrum with sinusoids.

Nineteen equal area sections are divided, with the center frequency of each segment marked

with a circle.
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Figure 8. Spectra area division and mean frequencies

Figure 9 shows the ocean surface which results from the use of this method for the
case of sea state three, peak frequency of 0.862 radians per second. Nineteen sinusoids were

used to approximate the spectra, and the phase angles were randomly chosen.

23



1.5F

0.5

eta (feet)
o

-1.5¢

_2 | i 1 I 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
X (feet)

Figure 9. Sea surface approximation for sea state three using nineteen sinusoids

2. First order forces

The first order wave effects were provided in the form of submatine motions. They
were given as a seties of phasors, the real part of the summation representing the actual
perturbation caused by the first order wave forces.

2(t) = :‘21 Zie-i(wit+ai) (55)

o)=Y e @ (56)

Because the first order motions were provided for a specific depth, it was required to
correct Equations (55) and (56) for depth. The first order motions roughly correspond to the
particle motions given by Equation (42), so an exponential decay was used to derive the

following correction factor:
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67)

Application of Equation (57) to Equations (55) and (56) results in:
(1) = ";1Zie—J:T(a)iHa,-)-kl-(z—z”) (58)

o) = z;;leie_‘[__](wit+ai)—ki(z_2u) (59>

“The displacements given by Equations (58) and (59) are not suitable for inclusion in
the submatine equations of motion. For this, an acceleration is required. Differentiating twice

with respect to time results in:

. n i)~k (2
() = —zi=l ,2Z,¢” (@) ki) (60)

6(t) = -Z:‘zlwi29~e'i(“’i'+ai)‘ki(l—za) (61)

Equations (60) and (61) were incorporated as force and moment disturbances in the
equations of motion found in Chapter II. To test the validity of this approach, an open loop
simulation was performed using the accelerations from Equations (60) and (61) for one sea
state and heading. Figure 10 shows the results of this simulation, as well as the expected first
order motions. The upper curve shows the expected first order motions, and the lower curve
shows the results of integrating Equations (7) through (11) with the accelerations from
Equations (60) and (61). Although there was some drifting motion, the character of motion
and the approximate amplitude of each cycle of motion very close. The drifting motion was a

result lack of the lack of open loop depth stability, which is characteristic of submarines.
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Figure 10. Submarine response to first order accelerations, and expected response

3. Second order forces

For a particular depth and wave time history, the second order forces were given in the

following form:

20-37. 3 pldorobrace)] ©2)
i=] &=z}

M@)= Zn 2” Mjg(i((!wi—mj|)l+ai+aj)) (63)
i=1 j=1 i

Z(1) represents the force acting at the body fixed coordinate system in the z direction

and M(1)is the moment acting about the yaxis. It should be noted that Equations (63) and

(65) include the slowly varying forces (i # j) and the steady forces (i = j).
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It can be determined from analysis of the changes of second order forces with respect
to depth given by Crook (1994, pp. 61,62) that the steady forces with the following exponential
decay factor:

o2k (64)

The slowly varying order wave forces vary with depth according to the sum of the wave

numbers:

(ki) (65)

e"(ki+kj )2,

Application of Equations (64) and (65) to Equations (62) and (63) results in:

Z(t)= 2,11 Zj':l Eje(‘(‘|“"“"fl"*“f*“f""‘f*"f"z“»)) (66)

w=3r, B o) &

The real portion of Equations (66) and (67) represents the steady and slowly varying

second order wave forces acting on the submarine, with correction for depth.

4. Inclusion of wave forces in equations of motion
The first order accelerations and second order forces had to be combined to form the
force and moment disturbance accelerations for use in the deeply submerged equations of

motion (Equations (7) and (8)).

Fy (1) _[EO] 7l 20 (68)
Md(t) {{l}cideﬁnl - 6(t) * M) ‘
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E. CONCLUDING REMARKS

An elementary review of linear wave theory was presented. The case of interest, a
submarine at periscope depth, was examined to determine the salient elements of its interaction
with the incident waves. The parameters suggested that the major features of the incident
wave effects on the submarine could be determined by using a potential analysis with inertial

and diffraction forces accounted for.

The Bretschneider spectrum was used to determine the spectral density functions of
the sea states of interest. For the purpose of time domain simulation, the spectrum was
approximated by the superposition of 2 number of regular waves with randomly chosen phase
angles.

The first order force transfer function and second order forces response amplitude
operators were provided for the SUBOFF for a nominal speed and depth. Approximate depth

scaling was introduced to allow use at depths other than nominal.
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IV. STATE FEEDBACK CONTROL AT PERISCOPE DEPTH

A. INTRODUCTION

1 State feedback control

One popular means of control is to feed back the system states after the application of
linear gains. System response of linear systems subjected to this type of control is predictable,
and a variety of tools ate available for control law gain selection.

The ship’s control party on a submarine with conventional indications does not have
the full state of the ship to operate from. Although the actual instrumentation may vary
somewhat, in general a few analog indications are used in conjunction with a digital depth
indication. For this reason, various levels of partial state feedback were used to evaluate the
effects of missing indications.

The use of different state feedback schemes was felt to be appropriate to model human
operators. The treatment of airplane pilots as a control law “has come to be trecognized as a
quasilinear element for random-appearing tracking tasks related to piloting. At the same time,
the pilot retains spectacular nonlinear gain changing, mode switching, and goal seéking
precognitive control capabilities as yet only partially explored.” (Graham and McRuer, 1991, p.
1093) In this context, it was assumed submarine “pilots” could be treated in a similar fashion,
with feedback from each operating state determined with linear gains.

The use of a first order lag was considered to model the combined human and control
surface response time. It was found that reasonable lag values (on the order of a half second)
had minimal effect on the control response and cotresponding submarine motions. Because of
the computational expense, the control response time was neglected.

State feedback control of the linear system
%= Ax+Bu (69)
where:

A e R™™ | state matrix
B e R™", control matrix

x e R™!  state vector
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ueR™ control vector

can be expressed as:
u=Kx (70)

where:

Ke®Rmm 71)

The system given by Equation (69) subject to the control law given by Equation (70) has the

following closed loop dynamics matrix:

A, =(A+BK) (72)

The eigenvalues of the closed loop dynamics matrix will be related to the system
stability and responsiveness. In general, the real portion of the eigenvalues must be negative

for system stability. Also the more negative the eigenvalues, the faster the system response.

2. SUBOFF simulation parameters
Wave force data was available for the SUBOFF for four different cases. These were

sea states three and four with head and beam directions. All were valid at a speed of six knots

and depths greater than fifty feet.

At six knots, the linear state representation used for eigenvalue determination and

control law design is:

w -0.0179 37101 00196 Ofw -0.0628 -01009 Fy (1) (73)
q 00006 -00680 -00034 Ojgq 0.009 -.0027 |4, M, @)
6|7 o 1 o ole|T] o o [af o
z 1 0 -101269 0} z 0 0 0
where:
Fd (t) = Frrim + Fwave(t)
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Md (t) = Mtrim +Mwuve(t)

All simulations were performed using the nonlinear equations of submarine dive plane

motion:
W=y uw +a,,uq + a3 sin(6) + by u*6, +by,u?8, + Fy cos(6) +e,,9° +e,qw (74)
G =Gy uw +a,uq +ay sin(@) +by,u*8, +byu*s, + M, cos(0) + €9 +epqw (75)
6=0 76
2 =wcos(8) — usin(8) (77)
x =wsin(0) + ucos(6) (78)

The simulations were performed using a commanded depth of 55 feet and using a zero
error initial state vector. Commanded pitch angle, heave and pitch rate were all zero. The
depth was chosen to provide a good representation of actual submarine petiscope operating
depth.

3. State feedback implementation with SIMULINK®

The state feedback controller was implemented in the SIMULINK® model shown in
Figure 11. This block was designed to use an optional feedforward signal, and also to facilitate
the use of integral control (Both feedforward and integral control are discussed later in this
chapter). Deflection limits were placed on the control surfaces. Control surface rate limits
were not included, but could be easily added. These limits are of interest because of the
relationships between control surface rates, hydraulic plant size requirements and noise from

control surface operations.
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{3

out 1 Saturation Sumf PD Control  Remove state vector
- Law X minus
‘ commanded

(3]

Feed Forward

Figure 11. State feedback control block diagram

A SIMULINK® model was developed to incotporate the submarine dynamics of
Chapter II, the wave forces of Chapter III, and the state feedback control law. Also included
was a logical means of adjusting the submarine’s trim. This was done by adding ballast in units
of thousands of pounds at the center of buoyancy, and shifting ballast from the forward trim
tank to the after trim tank in units of thousands of pounds. The details of the trim model are

shown in Figure 12, while the overall model is shown in Figure 13.

Muxl— MM

Constant1 Gain c —
Mux onvert to
Accelerations _ |Mux
Constant2 Gaint ux -
zeros(1,m-3)
Constant3

Figure 12. SIMULINK® trim model
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Figure 13. SIMULINK® state feedback control submarine model

4. Integral control on depth
To apply integral control, an additional state is introduced. Equations (74) through
(77) are augmented by:

Z‘l = 2= Zeommanded (79)

which is used to provide state feedback. This forces the steady state value of g to zero. In
general, this approach is satisfactory as long as the control effort does not become saturated

and the eigenvalues of the integral state are slower than the state which is being zeroed.

5. Feedforward of wave forces

Given the wave forces values, control effort can be directly applied to eliminate the
average depth error. With a constant disturbance, a steady state value of the depth etror can be
determined (Appendix B). Using the linear equations of motion, the steady state depth error
can be written as 2 linear combination of the net force and moment disturbances:

L =CF,+C, M, (80)

Zss ~ Zcommande
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To climinate the depth error, it is required to apply the control effort it applied:

K (81)
KS - Z”[K%jl

Equations (80) and (81) can be combined to give a matrix gain relationship between the net

disturbance and the feedforward:

K =[Kx4:l[c C][Fd]z[clKM C2K14:]|iFd] (82)
ST Kl HM, CiKyy CyKa [ My

The state feedback control law with feedforward is:

\iibpil:___ KX+K5 (83)

sp

It has been suggested ( Musker, Loader, and Butcher, 1988), (Ni, Zhang, and Dai,
1994) that effective periscope depth control can be achieved by feeding forward the average
second order wave forces. Because wave forces are a dynamic disturbance and the feedforward
was calculated for a steady distutbance, a filter was employed to cut out the high frequency
components of the wave forces. The filter employed was a first order Butterworth filter with a

cut off frequency @,,. The cut off frequency was initially chosen as one radian/second. This

was well below the maximum frequency wave force components ( around 2.2 radians/second).
Figure 14 and Figure 15 show the effects of the first order Butterworth filter on the wave
forces at a depth of 55 feet in sea state three. It is apparent that with a cutoff frequency of ten
radians per second, the filtered forces and moments are very close to the unfiltered. At the
lower cutoff frequency, 0.1 radians per second, the filtered forces and moments are much
closer to the average values.

To implement the feedforward control law, it was assumed that the net external force
and moment were known quantities. Equation (82) was implemented in the SIMULINK®

model shown in Figure 16 while the complete system model is shown in Figure 17.
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6. Optimization algorithm and parameters
One difficulty of using partial state feedback is that conventional pole placement or
linear quadratic regulator algorithms can not be used to determine the gains. The gains in

question were selected randomly, and gain combinations which gave stable eigenvalues were
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simulated. Because of the clamping on the maximum planes angle, some gains which yielded
stable eigenvalues resulted in unstable ship control.

Randomly selected gains certainly provide less than optimum depthkeeping. Because
of this, each feedback case was optimized to provide the best case for a particular sea state and
commanded depth combination. In conjunction with the feedback optimization, the trim was
optimized.

The MATLAB® function CONSTR was used to petform the optimizations.
CONSTR uses the Broyden-Fletcher-Goldfarb-Shanno variable metric method, and supports
constrained optimization problems. To prevent the optimizer from selecting unstable systems,
a constraint was placed on the eigenvalues. The real part of the eigenvalues was required to be
less than a maximum value, usually -1073,

The objective of the optimizations was to reduce the root mean square (RMS) value of
the depth error. For the basic state feedback control, the average depth was expected to differ
somewhat from the commanded depth of 55 feet. Because of this, the objective for these
optimizations was to minimize the RMS value of the difference between the depth and the
mean depth. |

Because the optimizations were performed without regard for minimizing control
effort and or rates, large gains with attendant control chatter was expected. Although control
chatter is not consistent with normal submatine operations, it was neglected to provide a clear

basis of comparison between the differing levels of feedback.

B. FEEDBACK OF DEPTH AND PITCH ANGLE

1. Basic control _

An elementary level of ship control can be conducted with the stern and bow
planesman, each operating to control one particular state. The logical approach to this is for
the stern planesman to control the ship’s angle, and the bow planesman to control depth. This
results in the following control law:

(84)

W commanded

6hp _ 00 0 K14 ~ 94 commanded
a_yp - 0 0 K23 O —9

commaunded

N 8 I

~ Zcommanded
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16] < 8. (85)

After a stable set of random gains was determined, the controller was optimized to
minimize the deviation from the average depth. The formal optimization statement

(Vanderplaats, 1984, p. 9) is:

Minimize:
; (86)
J(Z = Zmean )2 dt
F(Ky4, Ky, H,F) = |2
ty
where:
z = depth , determined by nonlinear simulation
Iy
[ s
Zmean = b
t
H = Ballast added to center of buoyancy, thousands of pounds
F = Ballast shifted from forward fo aft, thonsands of “pounds
Subject to:
real(eigenvalues(A.)) € E (87)

Deviation from the mean value of depth, vice the commanded was used because of the
expected average depth error.

This approach was used for each of the four sea state cases. For sea state three (head
seas), the optimized response is shown in Figure 18. The results of the four optimizations ate
shown in Table 3. For the RMS error and maximum etror, the optimized values ate given,
along with their percentage of the initial values.

In all cases, use of the optimization resulted in reduction of the mean square depth

error (measured from the average depth). Reduction of the maximum error was also achieved.
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Sea State/Direction 3/head
Initdal Values i o . e
Kn 0.1465 0.1465 01465 | 01465
Kz 17.51 17.51 17.51 17.51
H/F (10° pounds) 15/0 15/0 15/0 15/0
Mean Depth (feet) 55.15 55.20 55.09 55.29
RMS Error (feet) 0.9220 0.9210 1.23 1.30
Maximum Etror (feet) 2.46 247 3.86 4.76
Eigenvalues -0.0074 + 0.20961 -0.0074 + 0.20961 -0.0074 + 0.20961 -0.0074 + 0.20961
-0.0074 - 0.20961 -0.0074 - 0.20961 -0.0074 - 0.20961 -0.0074 - 0.2096i
-0.0356 + 0.11441 -0.0356 + 0.11441 -0.0356 + 0.11441 .-0.0356 + 0.11441
-0.0356 - 0.11441 -0.0356 - 0.11441 -0.0356 - 0.11441 -0.0356 - 0.11441
Optmized Vaioes
Kn 0.4708 0.2016
Ko 63.83 22,5724 48.6186 19.58
H/F (103 pounds) 99/20 15.8/-4.9 15.6/-1.5 49/-5
Mean Depth (feet) 54.7 55.99 55.12 55.44
RMS Error (feet) 0.4550 (49%) 0.7549 (82%) 0.657 (53%) 1.23 (95%)
Maximum Error (feet) 1.533 (62%) 2.03 (82%) 2.54 (66%) 415 (87%)
Eigenvalues -0.0388 + 0.2392i -0.0419 + 0.14641 -0.0419 + 0.21781 -0.0010 + 0.21941
-0.0388 - 0.23921 -0.0419 - 0.14641 -0.0419 - 0.21781 -0.0010 - 0.2194
-0.0042 + 0.39111 -0.0010 + 0.23461 -0.0010 + 0.33971 -0.0419 + 0.13581
-0.0042 - 0.39111 -0.0010 - 0.23461 -0.0010 - 0.33971 -0.0419 - 0.1358t
Table 3. Optimized pitch and depth control law results and performance
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Figure 18. Simulation with depth and pitch angle control in sea state three (head sea
direction)

2. Disturbance feedforward
The pitch angle and depth feedback control can be implemented with a disturbance

feedforward to correct average depth error. This results in the following control law:

W =W ommanded (88)
6bp _ 00 O K\ | 99 commanded . Ci Ky, C,Ky4 ﬁd
55[’ o0 K23 0 6- ecammanded 0 0 A:[ d
2= Zcommanded
16] < 8,1 (89)

where Kis given by Equation (82) and the force and moment disturbances are filtered.
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After a stable set of random gains was determined, the controller was optimized to

minimize the deviation from the average depth. The formal optimization statement is:

1 (90)
J- (Z = Zcommanded )2 dt
F(K14,K23,a)m,]-],p): 0 t
f
Subject to:
real(eigenvalues(A,)) < E . o)

This approach was used for each of the four sea state cases. For sea state three (head
seas), the optimized response is shown in Figure 19. The results of the four optimizations ate
shown in Table 4. For the RMS error and maximum etror, the optimized values are given,

along with their percentage of the initial values.
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Sea State/Direction

Initial Values
K 0.1465 0.1465 0.1465 0.1465
Ky 17.51 17.51 17.51 17.51
w,, (rad/sec) 1 1 1 1
H/F (103 pounds) 20/0 20/0 20/0 20/0
Mean Depth (feet) 55.07 56.7 55.826 61.33
RMS Exror (feet) 0.408 224 1.71 6.93
Maximum Etrror (feet) 1.104 527 3.71 13.46
Eigenvalues -0.0074 + 0.20961 -0.0074 + 0.2096i -0.0074 + 0.2096i -0.0074 + 0.20961
-0.0074 - 0.20961 -0.0074 - 0.20961 -0.0074 - 0.20961 -0.0074 - 0.20961
-0.0356 + 0.1144i -0.0356 + 0.11441 -0.0356 + 0.11441 -0.0356 + 0.11441
-0.0356 - 0.11441 -0.0356 - 0.1144i -0.0356 - 0.11444 -0.0356 - 0.11441
Optimized Values
Ku 1.116 3.5763 7.40 3.396
Kx 151.00 454.7 1,073.6 979.02
®,, (rad/sec) 0.743 3.30 6.83 6.43
H/F (10 pounds) 19.5/3.5 221/1.3 26.5/3.25 8.4/-4.0
Mean Depth (feet) 54.996 55.14 55.04 55.21
RMS Error (feet) 0.102 (25%) 0.556 (25%) 0.810 (47%) 0.883 (13%)
Maximum Error (feet) 0.322 (29%) 2.24 (43%) 0.560 (15%) 3.36 (25%)
-0.0337 + 0.33451 -0.0354 + 0.60551 -0.0322 + 0.86041 -0.0250 + 0.56751

Eigenvalues

-0.0337 - 0.33451
-0.0092 + 0.60881
-0.0092 - 0.60881

-0.0354 - 0.60551
-0.0076 + 1.04901
-0.0076 - 1.04901

-0.0322 - 0.86041
-0.0107 + 1.62961
-0.0107 - 1.62961

-0.0250 - 0.56751
-0.0179 + 1.601%
-0.0179 - 1.601%

Table 4. Optimized pitch and depth control law with disturbance feedforward results and

performance
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Figure 19. Simulation with depth and pitch angle control with disturbance feedforward, sea
state three (head seas)

3. Integral control

The feedback of depth and pitch angle can be augmented with integral control on
depth to remove the average depth error. Since the bow planes are principally used for the
control of depth, the integral control was applied to the bow planes only. This results in the

following control law:
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5, 10 0 K3 0 0

sp

{5,,,,}_[0 0 0 K. K;s]

18] < 8,1

After a stable set of random gains was determined, the controller was optimized to

W =W ommanded
9 — 9 commanded
6- ecr)mmunded
2= Zeommanded

Z;

©2)

©3)

minimize the deviaton from the commanded depth. The formal optimization statement is:

Minimize:

Iy

2
J(Z = Zcommanded )" dt

0

F(Kl4,K]5)K23sH’F)=

Subject to:
real(eigenvalues(A.))

Iy

S Emax

9

©3)

This approach was used for each of the four sea state cases. For sea state three (head

seas), the optimized response is shown in Figure 20. The results of the four optimizations are

shown in Table 5.
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Sea State/Direction 3/head 3/beam 4/head 4/beam
Initial Values - o !
K T0.1465 01465 01465 0.1465
Kis 0.001 0.001 0.001 0.001
Ko 17.51 17.51 17.51 17.51
H/F (10% pounds) 20/0 20/0 20/0 20/0
Mean Depth (feet) 55.15 55.16 55.19 55.24
RMS Ertor (feet) 0.987 0.986 1.29 1.39
Maximum Error (feet) 2.614 2.63 4.01 512
Eigenvalues -0.0077 + 0.20881 -0.0077 + 0.20881 -0.0077 + 0.20881 | -0.0077 + 0.20881
-0.0077 - 0.20881 -0.0077 - 0.20881 -0.0077 - 0.2088i -0.0077 - 0.2088i
-0.0318 + 0.11481 -0.0318 + 0.1148i -0.0318 + 0.11481 | -0.0318 + 0.1148i
-0.0318 - 0.11481 -0.0318 - 0.1148i -0.0318 - 0.11481 -0.0318 - 0.11481
-0.0070 -0.0070 -0.0070 -0.0070
Optimized Values
K 1.5609 0.6329 0.2906 0.296
Kis 0.0019 0.0012 0.0004 0.0005
Koy 304.5 107.76 28.46 76.53
H/F (10° pounds) 18.2/14 20.0/0.1 18.1/-3.4 12.2/-4.2
Mean Depth (feet) 55.01 55.09 55.05 55.11
RMS Error (feet) 0.455 (46%) 0.3811 (39%) 0.865 (67%) 1.05 (76%)
Maximum Eror (feet) 2.035 (18%) 1.0138 (39%) 3.38 (84%) 3.53 (69%)
Eigenvalues -0.0149 + 0.88241 -0.0134 + 0.52211 -0.0001 + 0.26151 | -0.0163 + 0.42961
-0.0149 - 0.88241 -0.0134 - 0.52211 -0.0001- 0.26151 -0.0163 - 0.42961
-0.0274 + 0.38871 -0.0286 + 0.24751 | -0.0421 +0.16751 | -0.0258 + 0.17071
-0.0274 - 0.3887i -0.0286 - 0.24751 -0.0421 - 016751 -0.0258 - 0.17071
-0.0012 -0.0020 -0.0015 -0.0015

Table 5. Optimized pitch and depth integral control law results and performance
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Figure 20. Simulation with depth, pitch angle, and integral control, sea state three (head
seas)

C. FULL STATE FEEDBACK WITH PARTIAL DISTRIBUTION

1. Basic control

The poor depth control of the previous section can be improved be adding to the

number of states fed back. In keeping with previous logic, the bow planes will be controlled

by the depth and heave, while the stern planes will be controlled by pitch and pitch rate. This

results in the following control law:
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W= W ommanded (96)

{6bp :| _ [Kll 0 0 Kl4:l 9~ 49 commanded
5: 0 K22 K23 0 0- ecnmmunded
2= Zeommanded

1< 6,00 ©7)

After a stable set of random gains was determined, the controller was optimized to

minimize the deviation from the average depth. The formal optimization statement is:

Minimize:
1 98)
J @ 2
F(K\, K14, Ky, Kp3, H, F) = _O——Tf——_
Subject to:
real(eigenvalues(A,)) < E_., ©9)

This approach was used for each of the four sea state cases. For sea state three (head

seas), the optimized response is shown in Figure 21. The results of the four optimizations are

shown in Table 6.

47



Sea

3/head

3/beam

4/head 4/beam
State/Direction
Initial Values
KT 12.5543 12.5543 0 12.5543
0 | 225268 22.5268 22.5268
0 | 249900 24.9900 24.9900
2.5490 0
H/F (103 pounds) 20/0 20/0 20/0 20/0
Mean Depth (feet) 55.06 55.33 55.21 55.73
RMS Exror (feet) 0.216 0.425 0412 1.06
Maximum Error (feet) 0.796 1.38 1.26 3.38
Eigenvalues -0.6743 -0.6743 -0.6743 -0.6743
-0.0413 + 0.35871 -0.0413 + 035871 | -0.0413 + 0.3587i | -0.0413 + 0.35871
-0.0413 - 0.35871 -0.0413 - 0.35871 -0.0413 - 0.35871 -0.0413 - 0.35871
-0.1789 -0.1789 -0.1789 -0.1789
Optimized Values
K 0 7035 | 0 | 13265 ] 0 | 1658 0
0 1366.3 0 91.224 0 91.49 0 96.44
0 1163.3 0 20.87 0 51.15 0 82.43
89.26 0 3.813 0 2.1048 0 1533 0
H/F (103 pounds) 14.6/-1.4 12.3/-0.4 20.0/0.1 16.8/0.0
Mean Depth (feet) 55.02 55.01 55.21 55.09
RMS Error (Feef) 0.1969 (91%) 0.350 (82%) 0.358 (87%) 0.821 (77%)
Maximum Error (feet) 117 (147%) 0.99 (72%) 1.13 (90%) 3.46 (102%)
Eigenvalues -3.3197 -0.1266 + 0.47091 -0.7286 -0.2213 + 0.88611
-0.0693 + 1.25221 -0.1266 - 0.4709% -0.1458 + 0.4700i -0.2213 - 0.88611
-0.0693 - 1.25221 -0.2619 + 0.01791 -0.1458 - 0.47001 -0.3797 + 0.4819%1
-0.1879 -0.2619 - 0.01791 -0.1514 -0.3797 - 0.48191

Table 6. Full state feedback (partial distribution) control law optimization results and

performance
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Figure 21. Simulation with full state partial distribution feedback control, sea state three
(head seas)

2. Disturbance feedforward

As before, the basic control law can be modified to include a feedforward term to

correct the average depth error.

W=W ommanded (1 00)
6bp _ Kll 0 0 K14 9 — 49 commanded " Cl K14 C2 K14 F,[
5.\'[) 10 K 22 K 23 0 - 9u)mmunded 0 0 M d

2= Zeommanded
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After a stable set of random gains was determined, the controller was optimized to

minimize the deviation from the average depth. The formal optimization statement is:

Minimize:

(102)

ty

2
J‘ (z- 2 commanded ) dr
0

F(K\,, K14, Ky, Kp3,0,,,H, F) = ;
;

Subject to:
real(eigenvalues(A,)) € E (103)

This approach was used for each of the four sea state cases. For sea state three (head

seas), the optimized response is shown in Figure 22. The results of the four optimizations are

shown in Table 7.
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Sea 3/head 3/beam 4/head 4/beam
State /Direction
Initial Values = : e il
KT 25531 0 [125543 ] o0 |12553| 0 |125543| O
0 | 22.5268 0 | 22.5268 0 | 22.5268 0 | 22.5268
0 | 249900 0 | 24.9900 0 | 24.9900 0 { 24.9900
2.5490 0 2.5490 0 2.5490 0 2.5490 0
w,, (rad/sec) 1 1 1 1
H/F (103 pounds) 20/0 20/0 20/0 2070
Mean Depth (feet) 55.16 55.35 55.23 55.82
RMS Error (feet) 037 0.533 0.551 1.40
Maximum Error (feet) 1.264 1.83 1.72 3.50
Eigenvalues -0.6743 -0.6743 -0.6743 -0.6743
-0.0413 + 0.35871 -0.0413 + 035871 | -0.0413 +0.3587i | -0.0413 + 0.35871
-0.0413 - 0.35871 -0.0413 - 0.35871 -0.0413 - 0.35871 -0.0413 - 0.35871
-0.1789 -0.1789 -0.1789 -0.1789
Optimized Values
Kr

@, (rad/sec) 0.481 3.80 0.998 0.999
H/F (10? pounds) 71/-33 19.7/-2.5 20.0/0.0 19.7/0.0
Mean Depth (feet) 55.01 55.23 55.18 55.63
RMS Exror (feet) 0.0785 (21%) 0.3624 (68%) 0.5171 (94%) 1.25 (89%)
Maximum Error (feet) 0.246 (19%) 1.07 (58%) 2.03 (118%) 3.26 (93%)
Eigenvalues 11709 -0.1692 + 1.3601i -0.6730 -0.9159
-0.5214 -0.1692 -1.3601i | -0.0429 +0.3320i | -0.0386 + 0.31731
-0.0948 -0.6826 + 0.45291 -0.0429 - 0.33201 -0.0386 - 0.31731
-0.3993 -0.6826 - 0.45291 -0.1767 -0.1769

Table 7. Full state feedback (partial distribution) with disturbance feedforward control law
optimization results and performance
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Figure 22. Simulation with full state partial distribution control and disturbance
feedforward, sea state three (head seas)

3. Integral Control

This full state feedback with partial distribution was augmented with integral control

on depth to remove the average depth error. As before, the integral control was done using

the bow planes only. This results in the following control law:

617[7 — K]l 0 O KM KlS
Sy 0 Ky, Ky O 0

|6] < 6 e
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After a stable set of random gains was determined, the controller was optimized to

minimize the deviation from the average depth. The formal optimization statement is as

follows:
Minimize:
p (1006)
[ @ 2pen)
F(K1.K\4,K\5.K5, K03, H, F) = 0 t
Subject to:
real(eigenvalues(A.)) < E (107)

This approach was used for each of the four sea state cases. For sea state three (head
seas), the optimized response is shown in Figure 23. The results of the four optimizations are

shown in Table 8.
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Sea State/Direction 3/head 3/beam 4/head 4/beam
Initdal Values . B ' : e
KT 125543 | 0 125543 | 0 | 125543 0 | 125543 ] o0
0 22.5268 0 | 22.5268 0 | 22.526 0 | 22.526
0 | 24.9900 0 | 24.9900 0 8 0 8
2.5490 0 2.5490 0 2.5490 24.990 2.5490 | 24.99
0.0010 0 0.0010 0 0.0010 0 0.0010 0
H/F (10? pounds) 20/0 20/0 20/0 20/0
Mean Depth (feet) 55.05 55.31 55.21 55.74
RMS Ertor (feet) 0.2106 0.533 0.4868 1.205
Maximum Exror (feet) 0.866 1723 182 3.43
Eigenvalues -0.6744 -0.6744 -0.6744 -0.6744
-0.0412 + 0.35871 -0.0412 + 0.35871 -0.0412 + 0.3587t -0.0412 +
-0.0412 - 0.35871 -0.0412 - 0.35871 -0.0412 - 0.35871 0.35871
-0.1785 -0.1785 -0.1785 -0.0412 - 0.35871
-0.0004 -0.0004 -0.0004 -0.1785
-0.0004
Optimized Values -
K 52312 0 385.2 0 14074 | 0 | 7908 0
0 1366.3 0 874.3 0 73.89 0 353.83
0 11633 0 1400.5 0 21.85 0 54.45
89.26 0 254.4 0 2.146 0 52.88 0
.04016 0 0.0077 0 0.0003 0 0.0032
H/F (10° pounds) 14.6/-1.4 26.7/4.6 21.2/-0.2 10.5/-2.6
Mean Depth (feet) 55.02 55.05 55.25 55.18
RMS Exror (feet) 0.059 (28%) 03017 (57%) 0.4274 (88%) 0.909 (75%)
Maximum Error (feet) 0.248 (29%) 0.862 (50%) 1.16 (64%) 3.59 (105%)
Eigenvalues -30.7579 -22.3751 -0.7495 -3.4631
-4.6840 -1.8146 + 1.65551 -0.1526 + 0.32971 -1.4563
-1.0562 -1.8146 - 1.65551 -0.1526 - 0.32971 -0.9504
-0.1695 -0.6572 -0.1168 -0.1490
-0.0005 0.00003 -0.0001 -0.0001

Table 8. Full state feedback (partial distribution) integral control law optimization results and

performance
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Figure 23. Simulation with full state partial distribution feedback integral control, sea state
three (head seas)

D. FULL STATE FEEDBACK

1 Basic control
The best control possible using state feedback should result from the use of all four

states by each control. This results in the following control law:
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W =W ommanded (l 08)
{5bl’:| - |:Kll K12 Klf\ K14] 9 = 9 commanded
6«"[’ K 21 K 22 K 23 K 24 0~ 9¢'(mzmunded
2= Zeommanded

(109)

18] <

After a stable set of gains was determined using a linear quadratic regulator algorithm,

the controller was optimized to minimize the deviation from the average depth. The formal

optimization statement was:
Minimize:

(110)

F(K, K2, K 3. K14, Ky, Kyp . Ky3, Koy H F) =

Subject to:
(111)

real(eigenvalues(A.)) < E .
This approach was used for each of the four sea state cases. For sea state three (head

seas), the optimum response is shown in Figure 24. The results of the four optimizations ate

shown in Table 9.
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Sea State/Direction 3/head
Initial Values .
KT
H/F (10% pounds) 20/0 20/0 20/0 20/0
Mean Depth (feet) 55.09 55.37 55.21 56.16
RMS Error (feet) 0.0914 0.3605 0.355 1.60
Maximum Error (feet) 0.262 1.34 1.09 4.55
Eigenvalues -0.8859 -0.8859 -0.8859 -0.8859
-0.2854 -0.2854 -0.2854 -0.2854
-0.1630 + 0.2247i -0.1630 + 0.22471 | -0.1630 + 0.2247i | -0.1630 + 0.22471
-0.1630 - 0.2247i -0.1630 - 0.22471 -0.1630-0.22471 | -0.1630 - 0.22471
Optimized Values
KT 11.5734
45.790 178.92
-135.16 40.760
3.6389 0.0221
H/F (10% pounds) 20.1/-0.9 18.0/-0.3 18.0/-0.33 19.9/0.0
Mean Depth (feet) 55.03 55.13 55.13 56.54
RMS Error (feet) 0.037 (40%) 0.2638 (73%) 0.2683 (16%) 1.24 (78%)
Maximum Etror (feet) 0.119 (45%) 0.961 (72%) 0.961 (88%) 4.06 (89%)
Eigenvalues -1.7613 -1.0446 -1.0446 -1.0313 + 0.42181
-0.2510 -0.3493 + 0.28811 | -0.3493 + 0.2881i | -1.0313 - 0.4218i

-0.0617 + 0.52641
20.0617 - 0.52641

-0.3493 - 0.28811
-0.2053

-0.3493 - 0.28811
-0.2053

-0.0936 + 0.07411
-0.0936 - 0.07411

Table 9. Full state feedback control law optimization results and performance
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Figure 24. Full state feedback optimized control simulation, sea state three (head seas)

2. Disturbance feedforward

The state feedback control law was modified to include disturbance feedforward. This

results in the following control law:

W =W commanded (1 12)
[5171:]___[1(11 Ky, K KM:I 9~ 49 commanded +[C|K14 C2K14} F,
S Ky K»n Ky Ko | 0-6ommandea CiKyn GCKyu M,
27 Zeommanded
|5[ <6, (113)
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After a stable set of gains was determined using a linear quadratic regulator algorithm,
the controller was optimized to minimize the deviation from the average depth. The formal

optimization statement was:

Minimize:

1 (114)

2
J. (2 Zeommanded ) dt
0

F(Ky, K12, K13, K14 K21, K, K3, Koy 0, , H, F) = ‘
f

Subject to:
real(eigenvalues(A.)) < E ., (115)

This apptoach was used for each of the four sea state cases. For sea state three (head

seas), the optimum tesponse is shown in Figure 25. The results of the four optimizations are

shown in Table 10.
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Sea State/Direction

Initial Values

KT

3/head

@,, (rad/sec)

1

1

H/F (10? pounds) 20/0 20/0 20/0 20/0
Mean Depth (feet) 55.06 55.937 55.21 56.70
RMS Error (feet) 0.1428 1.343 0.430 2.393
Maximum Error (feet) 0.4897 3.46 1.11 5.49
Eigenvalues -0.8859 -0.8859 -0.8859 -0.8859
-0.2854 -0.2854 -0.2854 -0.2854
-0.1630 + 0.22471 -0.1630 + 0.22471 | -0.1630 + 0.22471 | -0.1630 + 0.22471
-0.1630 - 0.22471 -0.1630 - 0.2247i -0.1630 - 0.2247i | -0.1630 - 0.22471
Optimized Values ‘ : o
KT 262 | 965 | 03964 | 1108 | 2060 | 2681 | 500 | -394 |
-1633 914.4 -879.14 | 329.16 -194.6 181.5 -452.53 609.1
-368.8 91.9 -297.0 -91.096 27.66 48.6 25.47 449.5
5 -1.2 3.52 0.215 -0.276 -0.238 6.66 0.318
w,, (rad/sec) 1.4046 1.033 0.983 1.739
H/F (103 pounds) 13.5/-0.8 19.16/-0.2134 19.0/-0.1 18.8/-0.1
Mean Depth (feet) 55.0013 55.18 55.18 55.22
RMS Ecror (feet) 0.0928 (65%) 04121 (31%) 0.400 (36%) 0.792 (33%)
Maximum Exror (feet) 0.2852 (58%) 1.62 (47%) 1.117 (101%) 2.25 (41%)
Eigenvalues -7.0391 -0.8095 + 0.52681 -1.1927 -0.0898 + 0.92971
-4.6280 -0.8095 - 0.52681 -0.2499 + 0.3312 -0.0898 - 0.92971
-0.1322 + 0.132% -1.1529 -0.2499 - 0.33121 -1.1834
-0.1322 - 0.132% -0.0315 -0.0618 -0.6517

Table 10. Full state feedback control law with disturbance feedforward optimization results
and performance
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Figure 25. Full state feedback control with disturbance feedforward optimized control
simulation, sea state three (head seas)

3.

Integral control

This full state feedback with partial distribution was augmented with integral control

on depth to remove the average depth error. Since the bow planes are principally used for the

control of depth, the integral control was done using the bow planes only. This results in the

following control law:

— K]l

K13 KM K]S
K23 K24 KZS
16] < 8.
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After a stable set of random gains was determined, the controller was optimized to

minimize the deviation from the average depth. The formal optjrnization statement is:

Minimize:

(118)

Iy
(z- )2dt
Z = Zcommanded

0

F(K”,K,z,K,_;,K14,K15,K21,K22,K23,K24,K25,H,F)= '
s

Subject to:
(119)

real(eigenvalues(A,)) S Emax

This approach was used for each of the four sea state cases. For sea state three (head

seas), the optimum response is shown in Figure 26. The results of the four optimizations are

shown in Table 11.

62



Sea State/Direction

Initial Values
KT 6547 | 51622 | 6847 | 51622 | 6847 | 51622 | 6847 | 51622
-168.26 121.32 -168.26 121.32 | -168.26 | 121.32 | -168.26 | 121.32
-65.795 27.744 -65.795 27.744 | -65.795 | 27.744 | -65.795 | 27.744
0.9740 -0.0789 0.9740 -0.0789 | 0.9740 | -0.0789 | 0.9740 | -0.0789
0.01 -0.01 0.01 -0.01 0.01 -0.01 0.01 -0.01
H/F (10% pounds) 20/0 20/0 20/0 20/0
Mean Depth (feet) 55.01 55.02 54.78 54.68
RMS Error (feet) 0.101 0.415 0.573 2.483
Maximum Error (feet) 0.3065 1.545 1.79 6.927
Eigenvalues -0.8854 -0.8854 -0.8854 -0.8854
-0.2693 -0.2693 -0.2693 -0.2693
-0.1652 + 0.2153%1 -0.1652 + 0.2153 | -0.1652 + 0.2153i | -0.1652 + 0.21531
-0.1652 - 0.21531 -0.1652 - 0.21531 -0.1652 - 0.21531 -0.1652 - 0.21531
-0.122 -0.122 -0.122 -0.122
Optimized Values
KT 240.17 24.2736 1.3875 7.5561 13.059 4.681 »1.679 .0
-137.3 256.28 -158.91 | 153.309 | -146.54 | 155.09 | -234.17 | 257.016
-195.76 84.99 -52.850 39.280 -36.04 42.31 -94.42 48.260
36.65 0.1753 0.4948 -0.0550 | 0.9425 [ -0.0484 1.140 -0.0327
0.162 -0.0128 0.0109 0.0069 0.013 -0.0037 | 0.0111 | -0.0105
H/F (10% pounds) 20.7/1.9 19.1/0 20/0 19.9/0.0
Mean Depth (feet) 55.00 55.00 54.99 54.92
RMS Error (feet) 0.0414 (14%) 0.372 (90%) 0.536 (93%) 1.96 (79%)
Maximum Eror (feef) 0.175 (57%) 1.01 (65%) 157 (88%) 6.88 (99%)
Eigenvalues -17.3244 -0.8739 -1.2707 -1.0690
-0.7017 -0.1541 + 0.1441i | -0.2086 + 0.16281 | -0.1214 + 0.332T1
-0.1942 + 0.42961 -0.1541 - 0.1441i -0.2086 - 0.16281 -0.1214 - 0.33271
-0.1942 - 0.42961 -0.2567 -0.2056 -0.2428
-0.0076 -0.0375 -0.0208 -0.0012

Table 11. Full state feedback integral control law optimization results and performance
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Figure 26. Optimized full state feedback with integral control simulation, sea state three
(head seas)

E. CONCLUDING REMARKS

For each case of feedback control, the degree of control achieved generally improved
by the additional state feedbacks. Full distribution of each state to both controls further
reduced the error. Table 12 provides a summary of the optimizations petformed, and the RMS
error of each one.

Changes in the optimized trim and control law in all cases vaied substantially with
changes in sea state Of direction. This is consistent with operational experience.

Each controller was optimized with only the goal of minimizing the mean square of

the depth etror. This resulted in large gains and excessive control effort. In addition, large

rates of control were experienced. This would be detrimental for actual submarine operations,

as there are rate limits associated with the control surfaces. These limits come from the sizing
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of the hydraulic plants which drive the planes, and operation concerns related to plane induced
noise.

Some improvements in depthkeeping were achieved by the feedforward of the
disturbance forces. This is in spite of the feedforward being based on a steady state response

to a constant disturbance.

Sea State/Direction 3/Head 3/Beam 4/Head 4/Beam
Control Scheme L -
Depth and Pitch Angle 04550 | 07549 | 0657 123
Depth and Pitch angle with feedforward 0.102 0.556 0.810 0.883
Depth and Pitch angle with integral 0.455 0.3811 0.865 1.05
Full State with partial distribution 0.1969 0.350 0.358 0.821
Full State with partial distribution and feedforward 0.0785 0.3624 0.5171 1.25
Full State with partial distabution and integral v 0.059 0.3017 0.4274 0.909
Full State 0.037 0.2638 0.2683 1.24
Full State with feedforward 0.0928 0.4121 0.400 0.792
Full State integral 0.0414 0.372 0.536 1.96

Table 12. Optimized RMS error (feet) of state feedback control schemes
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V. SLIDING MODE CONTROL

A. INTRODUCTION
1. Overview of MIMO sliding mode control
The controller design starts with a standard linear state space representation:

%= Ax+ Bu (120)

whete:
A e R™™ | state matrix
B € R™"  control matrix
x e R™! | state vector

ueR™! | control vector

The sliding mode control law, #, is composed of two main parts:

w= i+ , (121)

The first part, i, is a linear feedback based on the linear representation given by Equation
(120). The second patt, i , are nonlinear feedbacks with their signs switching depending on
the relationship of the system states to the sliding surfaces. The sliding surfaces ate hyper
planes in the state space, with one for each control. They ate defined by:

o(x)=8Tx=0 (122)

Where:
Se R

To determine the nonlinear feedback functions, the concept of Liapunov stability is

used. The Liapunov function is taken as:

1 1
V(x)= 5(012 +0) +...+o,f) (123)
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Asymptotic system stability 1s guaranteed provided that V(x) is a positive definite function,

that is:

V(x) = 6,0, + 0,0,+..45,0, <0 (124)

Equation (124) is satisfied if:
6,0, <0fori=1ton (125)

Equation (125) can be rewritten as:

0; =-1;sign(0;) (126)

where 7, is a positive gain parameter for the # sliding surface. Equation (126) can be rewtitten

after substituting the time derivative of Equation (122) and Equation (120) as:

[ mysign(0)) ] (127)
nzsign(oz)
ST (Ax+ Bu)=—
| 7,5ign(0)]
Solving Equation (127) for u yields:
[ n,sign(o, )] (128)
1,5ign(07)
u=—(STB)STAx—(s"B)”
| 7,5ign(0,)]
Equation (128) can be rewritten in matrix form as:
u = Kx+ K,nsign(o) (129)

where:
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K=—(S"B)'STA

K, =—(S"B)"

Equation (129) is identical in form to Equation (121), with a linear state feedback and a
nonlinear switching term. '

For the decomposition in Equation (128), it is required that the closed loop stability
matrix, (A-BK), have 7 zero eigenvalues. The sliding sutfaces are the left eigenvectors resulting

from the zero eigenvalues.

2. Utkin’s method for MIMO sliding mode control law design
Determination of the sliding surfaces can be difficult, especially with a MIMO system.
One technique for this is proposed by Utkin (1977). For this technique to be applied, the B

matrix of the state space system (Equation (120)) must be of the form:

g [81] (130)

where:

B, e R™

e R (m—n)xn

For the MIMO cases of vertical plane depth control used in this thesis, this was the case. For
the stern planes only control examples, a QR factorization was applied, to transform the state

space system into this form.

Given that the B mattix is of the form defined in Equation (130), Equation (120) can

be decomposed into the following:

Xl =AHX1 +A]2.X2+Blu (131)

Xy = Apxy + ApXy (132)
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where:

X € R
X, e m(m—n)xl
A]] e mll.ﬂl
A]2 e mnx(m—n)
A21 e m(m—n)xn

A22 € qﬁ(m—n)x(m—n)

The sliding surfaces become:

o=8x +57x, =0

where:

ST e jm

S2T c g{rnx(m—n)

(133)

Because the sliding surfaces ate the left eigenvectors of the # zero eigenvalues, S| can

be set to the identity matrix without loss of generality. Substitution of Equation (133) into

Equation (148) leads to:

G = x, + 55 x, = -Tsign(x, +57 %5)

u= “Bl_] [(An +S2TA21)XI + (A +52TA22)X2]_ Bl_]
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[ mysign(o) |
1,5ign(o;)

| 11,5ign(0,,) |

(134)

(135)



When the system is on the sliding surfaces, Equation (133) can be used to solve for x,

in terms of x, , resulting in:

X = -STx, (136)

Substitution of this result into Equation (132) results in:

% = (Ap — Ay S3 )% (137)

Equation (137) is the set of independent equations that the non zeto eigenvalues for
the control result from. For the application of pole placement algorithms to determine the

sliding surfaces, it only has to be recognized that it is in the standard state space format:

= Ay By (138)

with:

Once S7 is determined, the control law can be determined by substituting it into Equation

(135).

Utkin’s technique also allows for the use of linear quadratic regulator methods for
determination of the sliding surfaces. (Utkin 1977) For this method, it is desired to minimize 2

quadratic performance index:

= 139
I=—l—-[xTQxdt (139
2%
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where O is a positive definite weighting matrix. By partitioning () in the same manner as A4

was partitioned for equations (131)and (132), Equation (139) can be rewritten as:

15 (140)
1 ZEJ(XITanl +x,T Qgrxy + 5,7 1%y + 2,7 Oy xy )t
0
or:
1% . (141)
0
where:
Q* =0pn - Q21Q1—11 Oz
A= Ay - A21Q1—11Q12
v=x+07 0%
With the system on the sliding surfaces, Equation (140) can be rewritten as:
562 = A*X2 + AZIV (142)
Equations (141) and (142) are in a recognizable form for the application of any
convenient linear quadratic regulator solution. The Hamiltonian is:
(143)

* 1 *
H=p"(A'x, + Az,v)——z—(szQ X, +vT Q)
The algebraic Riccati equation is:
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(AN Tk +kA” - kA, O Ak +Q" =0 (144)

The solution of Equation (144) results in:

v=-0r Al kx, (145)

This result is used with the definition for » from Equation (141) to provide the relationship

between x1 and x2. This results in the sliding surface:

ST = 0710y, + AjyK) (146)

With SJ determined, the control law can be determined by substitution into Equation (135).

This sliding mode LQR controller design was implemented in a MATLAB® function
SMLQR.M which included provisions for a QR factotization for the cases when the B matrix
was not of the form given by Equation (130). SMLQR.M is included in Appendix A.

3. Control of chatter |

One undesirable aspect of sliding mode control is the chatter induced by the nonlinear
switching term near the sliding surfaces. The nonlinear switching term in the sliding mode
control can cause control chatter when the system is near a sliding surface. One way to reduce
the chatter is to use the concept of a boundary layer around the sliding surface. First, a satsign

function is defined:

1Lx>1 (147)

satsign(x) =qx,~1<x <1
-lx<-1

A boundary layer of thickness ¢ around each sliding surface, is applied using the satsign

function:
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. [0) (148)
O; = satsign —

i

Equation (147) can be used to replace the sign function used in Equation (129) with no change
in the asymptotic stability of the system. There are some effects, however, because the
dynamics near the sliding surface are not the same as the closed loop dynamics which exist

when the system is on the sliding surface. The final control law is:

149
u=Kx+ Kmsatsign[%) (149)

Block info and requirements

7] K t4—] I(m-1,m)

out_ 1 Saturation Suml PD Control  Remove state vector
- Law X minus
commanded

3]

Feed Forward

Figure 27. SIMULINK® model sliding mode controller

Equation (149) was implemented as a SIMULINK® model, shown in Figure 27.

B. SIMO SLIDING MODE CONTROL RESPONSE TO DISTURBANCES
When applied to vertical plane submarine control, sliding mode control has several

nuances which are not obvious from inspection of the governing equations. In order to

illustrate these, the performance of sliding mode control will be explored through several

example cases. To keep the analytic derivations simple, the cases worked will be done with
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stern planes control only. The general concepts, however, will be applicable to stern and bow
planes control.

The response of sliding mode control to force and moment disturbances is
fundamental to its application to submatine control in the vertical plane. These force and
moment disturbances could result from a variety of situations. Examples of these include out
of trim conditions, free surface effects, and wave forces.

1. Basic sliding mode disturbance response

The first case will use a basic sliding mode control law, that is one without a

feedforward term or integral control. ‘The resulting control law is:

o=8Sw+S,g+5,0+S, 2 (150)
. C (151)

§=Kw+Kyg+ K0+ nKA.satszgn(E)
ol (152

a) Linear analysis steady state

Assuming that the sliding mode control is not saturated and that the control
deflection is less than the maximum, the submarine should reach an equilibrium state under the
action of steady force and or moment disturbances. The linear equations of motion in the

vertical plane with one control are:

W = ay uw + ay uq + a0 + bu’s +F, (153)
G = ayuw+ayuqg + a0 +byu’s+ M, (154)
=4 (155)

i=w-ub (156)

i=whtu (157)

Equations (150) through (157) can be solved for the following steady state condition:
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_ F,(—ub,)+ M ;(ub,) (158)
" bzan“2 +hay, _b1a21u2 —bay,
7y =0 159
_ F,(=b))+ M, (b) (160)
. bzan”2 +hay, _bla21u2 —bay,
2 =F ayu’ + Kyu'b, +ay +wnK ¢b,S, +u’nk ¢b,S; + Ku'b, (161)
wo u’K, S, p(bya, u* +bya, —b,a,u’ —bay)
_M, K3uzbl +a”u2 +a,, +u3T)K.‘,¢blS, + K,u3b, +u277K“,¢blS3
uanS4¢(b2a,lu2 +b,a,, —bla2,u2 -b,a,;)
_ Fd(a21u2+a23)+Md(-a”uz —ay;) (162)

kA

-2 2 2
u’ (bya,u” +bya,, —ba,u” ~bay)

If the sliding mode is just saturated, thatis |o/¢|=1, the system will still be
stable, however the gain parameter7) will be ata critical value. If further reduced, the system
will be unstable. Assuming the sliding mode is just saturated this critical value, 7, , can be

determined.

(163)

ayu* +ay + Kou’b, + Ku'b,
d 2 2 2
K u*(ba, u” +b,a, —ba,u” —ba,)
2 2 3
a,u’ +a;+ Ku'b + Kju'b
d 7 2 2
Ku'(bya,u” +bya 3 —bjayu 'bxan)l

erit

For cases with the gain parameter 7] less than critical, a steady state 2 results,
along with steady state values in all states other than z. By assuming a steady state Z and

solving Equations (150) through (157) for equilibrium, the following equations result:

_ Fy(—ay, —buK)) + Md(buK, +ay,) + u" K1(byay, b3y (164)
T W K (biay, ~ byayy) + uKi(aysby —axby) +ay3ag — anay
F, +buKn+6, (a3 +ayu’ +bu’ K, +bu’Ky) (165)

L T u(byuk, +ay,)
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W.\',\' = ue.\'.\' + Z.X.\' (1 66)

9, =0 (167)
S = _(alluw.\'.\' +al3ex.\' + Fd) (1 68)
58 bluz

Inspection of Equation (164) may cause the reader to incorrectly assume that a
nonzero steady state value of  will exist in the absence of disturbances. This is not the case,
however, because the use of Equation (164) implies the lack of a steady state z, and therefore
a disturbance.

b) Nonlinear analysis steady state

An analysis similar to that conducted on the linear equations can be conducted
to determine the system steady state response under a constant disturbance. The nonlinear

equations of motion in the vertical plane with one control ate:

W = a;uw + a,,uq + a5 sin(6) +bu*8 + F, cos(0) +e;,q* + ejnqw (169)
§ = Qg uw + ayytiq + ayy 5in(0) +buS + M, cos(6) + eyq* +eyqw (170)
6=g a7

7= wcos(8) — usin(0) (172)

Xx = wsin(@)+ucos(0) (173)

Once again, the basic sliding mode control of Equations (150) and (151) is
used. Assuming that steady state is possible (sliding mode control is not saturated, and the
control deflection is less than the maximum) Equations (169) through (173) subject to the basic

sliding mode control law can be reduced to the following nonlinear equation:

a,, sin(0)u’b, + a,y sin(9) cos(0)b, + F, cos® ()b, — (174)
bay, sin(0)u® — bya,, sin(8) cos(8) - b M, cos’(6) =0
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Solution of Equation (174) yields the steady state value of 6. Itis of note that
Equation (174) is independent of the control law. The correct root is readily determined by
using the value closest to the linear analysis (Equation (160)). Substitution of this value into

Equations (169) through (173) yields following steady state results:

w,, =utan(f,,) (175)

q,, =0 (176)

5 = —(a,uw,, +a,sin(6,)+F,)) 77)
. bu’

;].%(5.:.\‘ - KXW.\'A' - K39x.\') - Slw‘\',\' - 539.\'.\' (1 78)

Iy =
i 84

The steady state value of z given by Equation (178) is dependent upon the
control law gains. Following the example of the linear analysis, 2 critical value of the gain

parameter, 7, can be determined.

- Kl We — K39.vs (1 79)

Unlike the linear analysis, the critical value of the gain parameter is not just a

linear combination of the disturbance forces, but rather requires nonlinear solution for each

possible case.

If |6 /¢|>1 the sliding mode control will be saturated, and a nonzero steady

state Z, will exist. For this case, the control law control law reduces to:

8 = Kyw+ K,q + K30 + 1K sign(o) (180)

Given the steady state final condition in all state variables with the exception of
z, Equations (169) through (173) and (180) can be reduced to finding a root of the following

nonlinear equation:
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uz(b1K3a2]9+b1K,'a21 *b2K3a“9—b2K2a“)+uSln(9)(al3b2K1 —a23b1K1) + (1 81)
byuK, +a,,
byukK, +ay,

This can be accomplished using the using the linear value of ,, from Equation (164) as the

initial guess. It follows that:

N cos’ (6,,) + ay3 sin(8,, ) cos(6,,) (182)
G =7 u(byuK, +ay,)
u®(ay, sin(8,,) + byuk, sin(8,,) + b, K6, cos(6,,) + b, K ncos(8,,))
- u(buk, +ay;)
Wy = utan(8y) + 2 (183)
5.vx = K! Wit K39.\~s + T[K_‘.sign(O') (1 84)
c) Disturbance response simulation with basic sliding mode

These results can then be applied to the SUBOFF hydrodynamic coefficients.
For the modified coefficients used in this thesis, the linear state space system at six knots with

stern planes only is:

wl [-00179 37101 00196 Ofw] [-01009] [F, (185)
gl | 00006 -00680 -00034 0fgq| | -0027 M,
67| o i o ofelfl o [°flo
z 1 0 -101269 0]z 0 0

A sliding mode control law is determined using Utkin’s method. After some
experimentation, the diagonal of the minimization matrix Q was selected as Q11 = 100, Q2=

100, Q33 = 100, Q44 = 1. This yielded the following control law:

o =10w—-675592g — 1540826 + 0.0830z (186)
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c (187)
6 =—0.2803w + 84.8572q + 7.06120 + K nsatsign E

6| < 04 (188)

A moment disturbance was chosen to be controllable but give a nontrivial
response. The application of a force of five thousand pounds and moment of 4,573 thousand

foot pounds resulted in a pure angular acceleration , M, =0.001 radians/second?. For this state
space system, control law, and disturbance set, the value of n,;, was (0.0661). Application of

the nonlinear solutions yielded the steady state solutions in Table 13.

1 17 | w.(Feet]Sec)| q,(Rad sec)| 6, (Degrees)|  z.(Feet) | &, (Radians) | 2. (Feet!Sec
0 ~0.9606 0 -0.8271 Infinity 0.1673 -0.8143
05 11791 0 ~4.3402 Infinity 0.1941 -0.4094
1.1 -1.3965 0 7.8518 195783 0.2208 0

2 13965 0 ~7.8518 14.6467 0.2208 0

4 1.3965 0 7.8518 1116330 0.2208 0

Table 13. Steady state nonlinear solutions for M, =0001 radians/second?

The system transient response was simulated using the RK45 function of the
SIMULINK® toolbox. Figure 28 shows the resulting paths. The response is given for six

values of the ratio of i and 7,,;,. As expected, for values of 7 less than critical the control

Jaw is unable to maintain a steady depth.
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Figure 28. Nonlinear simulation of vertical plane response to a pure moment disturbance

The calculations and simulations were repeated for a pure force disturbance. A
force of 43 thousand pounds and 2 moment of 220.4 foot thousand pounds resulted in a pure
vertical acceleration of 0.005 feet/second?. For this state space system, control law, and

disturbance set, the value of 7.,;, was (0.04606).

N/ iy w,,(Feet | Sec) q,(Rad/sec)| 0,(Degrees) z,, (Feet) 6, (Radians) | %, (Feet/ Sec
0 1.5724 0 5.4888 Infinity 0.2357 0.5966
05 1.4156 0 2.9632 Infinity 0.2549 0.8902
1.1 1.8836 0 10.5368 22.4107 0.1976 0
2 1.8836 0 10.5368 17.4792 0.1976 0
4 1.8836 0 10.5368 14.4654 0.1976 0

Table 14. Steady state nonlinear solutions for F, =0.05

81



Depth, Feet

100 N, .

120 : ;
0 500 1000 1500 2000 2500

X axis, Feet

Figure 29. Nonlinear simulation of vertical plane response to a pure force disturbance

d) Disturbance response with sliding mode feedforward control

To eliminate the steady state error induced by a disturbance, several techniques
may be employed. Using a feedforward function in the sliding mode control law is one
technique. A feedforward term works by using knowledge of the external disturbance and
using applying some degree of control effort. This provides a steady state control effort to
oppose the disturbance without a steady state error. This approach is limited as it requires one
control per zero error state and may be limited in other ways. A feedforward term can be

added to the sliding mode control law by changing the sliding surface to the following:

o=Sw+S,q+S8,0+S, z2+S; (189)

The value of S; is such that it will equal the control effort that is applied by the

steady state quantity that is desired to be zeroed. Since the main priority is to obtain zero
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depth error, S; is selected to equal the control effort introduced by the previously calculated

value of steady state depth error:

190
SS = n?; (5\\ - Kl W,\'.\ - K39.\'.\') - Slws.\' - S39.v.\' ( )

kS

The steady state values needed for Equation (190) can be determined from
linear or nonlinear analysis, although the linear analysis will result in a non-zeto depth error.

The linear analysis gives the following:

Ss=CM, +C,F, (191)

where:

-5 192
h ? (all + 0123 + K3b, + Klub]).;-é‘}ﬂ,,_ Syuby ( )
S4K.rn u ) S4 S4

2 3
ayu’by +ayb, —biayu” —biay

1 }—

(193)

( 0 (a2,+a—223-+K3b2+K1ub2)+S—3b2—+§‘—wz—)
C = S4Kn u Sq  Sa
=

2 2
ayu"by +ayb, —bagu” —bax
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Figure 30. Nonlinear simulation of vertical plane response to a pure moment
disturbance with a feedforward term based on nonlinear steady state
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Figure 31. Nonlinear simulation of vertical plane response to a pure force disturbance with
a feedforward term based on nonlinear steady state
e) Disturbance response with sliding mode integral control
Another means of eliminating steady state error is by the use of an integral

control tetm. To accomplish this, an additional equation is added to the state space

tepresentation.
Z, =2 (194)

‘ This forces a zero steady state error in z, although there are some additional
considerations with the use of integral control. The resulting control law, with the additional
state, is:

o=8Sw+S,q+850+85, z2+Ss5z; (195)

°, (196)

8§ = Kyw+ Kyq + K36 + Kyz+ 1K satsign( s
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16| < 04 (197)

Based on inspection of Equations (195) and (196) several conclusions can be
drawn. First, because zis included in the proportional portion of the control law, values of the
gain parameter which are less than critical will result in a steady state error in z for any
controllable disturbance. Second, if there is a steady state error in z, the magnitude of the
integral term, z,, will tend to infinity. This can cause problems with changing conditions or
pathkeeping as it will delay the control response to other errors.

At a condition of steady state, with the gain parameter greater than critical, the
steady state error in zis zero. Because of this, the previously calculated values for steady state
pitch angle, heave, and control deflection are still valid (Equations (1 74) through (177)).
Moreover, because any controllable disturbance will result in a steady state condition these
values apply for cases whete the gain parameter is less than critical

For conditions where the gain parameter is less than critical, the resulting

control law is:

S = Kyw+ K,q+ K30 + K,z + 1K  sign(o) (198)

And the steady state value of z is:

5.\'.\' - Klw.\'x - K30.\'.\' - nKsSign(G) (199)
Z.. =
AR} K4

Expressed in linear state space form for control law design, the representation

for the SUBOFF at six knots is:

w] [-00179 37101 00196 0 O w] [-01009 F, (200)
g 00006 —0068 —00034 0 Of g| |-00027 M,
6 |= 0 1 0 0 of6f+|] o0 |6+ O
z 1 0 -101269 0 Of z 0 0
z, 0 0 0 1 0]z 0 0
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Utkin’s method was applied to obtain a suitable control law. After some
expetimentation, the diagonal of the minimizatdon matrix Q was selected as Q11 = 100, Q2=

100, Q33 = 100, Qas = 1, Qss = 0.01. This yielded the following control law:

o = 10w -49.8158¢g —12.77256 + 01050z + 0.0035z, (201)

o (202)
8 = —1.6009w + 161.0589¢ + 24.81250 — 0.0991z + K nsatsign -(;)-

6] < 04 (203)

Simulations of the SUBOFF under sliding mode integral control with a
moment disturbance are given in Figure 32. For this state space system, control law, and
disturbance set the value of 17,,;, was (0.0484). Shown are five different values the ratio of the
gain parameter to the critical gain parameter. For values of the ratio larger than about two, the
system exhibited excessive oscillation before settling to zero depth error.

Simulations of the SUBOFF under sliding mode integral control with a force
disturbance are given in Figure 33. For this state space system, control law, and disturbance set

the value of 17,.,;, was (0.0466). Shown ate six different values the ratio of the gain parameter to

the critical gain parameter. For values of the ratio larger than about two, the system exhibited

excessive oscillation before settling to zero depth error.

by Sliding mode disturbance response conclusions

Submarine vertical plane depth control using sliding mode control can be
effectively achieved in the presence of disturbances. Sliding mode control is similar to linear
state feedback in that the an external disturbance will result in a steady state depth error.
However, if the gain parameters of the sliding mode control are not propetly selected, a loss of
depth control can occut.

Steady state error can be dealt with using feedforward or integral control.
Integral control has several advantages. Application of integral control does not require
knowledge of the disturbance. However, if the gain parameter is too small, windup of the

integral term occurs. If the gain parameter is too large, excessive oscillations can be
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introduced. The greatest advantage of integral control demonstrated was that gain parameters

less than critical did not result in loss of depth stability.
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Figure 32. Nonlinear simulation of moment disturbance using sliding mode integral
control

Feedforward control exhibited good disturbance compensation, assuming that
the disturbances were measurable. Given the disturbances, feedforward values can be
determined based upon the nonlinear equations of motion, requiting periodic nonlinear root
finding, or upon the linear solution. Because of the computational expense of obtaining the
nonlinear solution and the expected error in the hydrodynamic coefficients, a linear steady state

solution is appropriate for feedforward computation.
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Figure 33. Nonlinear simulation of force disturbance using sliding mode integral control

C. MIMO SLIDING MODE CONTROL AT PERISCOPE DEPTH

1. Introduction

The purpose of using sliding mode control was to provide an alternate means of
control which relied upon all the system states. The robust characteristics of sliding mode
control were thought to be a good approximation to the human operators.

At periscope depth, experience dictates several desired conditions. First, the ship is
trimmed heavy to counter the steady wave forces. Even more weight is brought on after this
point to allow for a constant small positive trim angle, of several degrees. This provides
reserve ballast which is made available by reducing the trim angle. Finally, in sea state three, it

should be very possible to maintain depth within one foot of ordered depth.
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The equations of motion used for this section are the nonlinear equations of submarine
motion in the vertical plane. They are different from the equations used previously in this
chapter, as they include both bow and stern planes. Also the force and moment disturbances
used represent not only constant disturbances, like ships trim, but time varying wave forces as

well. Repeated for convenience, the equations are:

W=a,uw+a,,uq +a,;sin() +byu’8, +b,u*8, + F; cos(6) +e 1q% +eqw (204)
G = Ay uw + ayuq + a3 sin(0) +byu%8, +by,u*S, + M, cos(6) +ey,g° +epqw (205)
f=g (200)
z= wcos_(B) — usin(@) 207)
i = wsin() +ucos(6) (208)
2. Basic sliding mode controller

The sliding mode controller is of the same form as before, although with the

introduction of MIMO control some of the scalar terms become vectors ot matrices. The

form of the basic sliding mode controller is:

O-] :S1‘W+512q+S139+Sl4 Z (209)

0-2 =S21W+522q+5230+524 Z (210)

. | o1 . | 02 (211)
5, = Ky yw+ Kjpq + K30 + 1, K satsign ¢— +1,K,,,satsign ¢—
1 2

. | g1 . 192 (212)
8, = Kyw+ Kppq + K30 + 1, K, satsign —¢;— + 1, K,,,satsign T
1 2

16,]< 62 (213)

6.1 < S (214
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As an initial attempt, Utkin’s method was used to determine a sliding mode control
law. After some experimentation, the diagonal of the minimization matrix Q was selected as

Q11 = 100, Q22 = 100, Q33 = 100, Q44 = 1. This resulted in the following control matrices:

[ 396585 -63281 -40454 0 (215)
T1-246916 42965 25027 O

1 0 (216)
| o 1
S=1 00985 17281
00170 - 00985

s

109711 —40506 (217)
3083 25210

The values of the gain and boundatry layer thickness parameters were taken as:

_ 1 (218)
h=m= 20
o=¢,=1 (219)

A SIMULINK® model was developed to incorporate the submarine dynamics of
Chapter I1, the wave forces of Chapter ITI, and the MIMO sliding mode control law. Also

included was the trim model from Chapter IV.

The model was used to simulate a step change in commanded depth from 140 feet to
50 feet in depth. To provide some realism in the trim condition, the submarine was trimmed
to 25 thousand pounds heavy, with no moment correction. Wave force values for sea state
three were used, with a relative heading of 180 degrees (head seas). Figure 35 shows the

resulting path taken by the submarine.
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Figure 34. SIMULINK® model of submarine with wave forces and trim

At first glance, this control scheme fulfills most of the desired characteristics of a
submarine depth controller. Periscope depth was achieved with no overshoot, and reasonable
depth control was maintained. The trim condition was selected so that a steady state positive
trim angle would exist at petiscope depth. Duting the depth change, the maximum trim angle
achieved was about ten degrees, which is also very consistent with actual submarine practice.

Inspection of Figure 36 shows some problems with this patticular controller. The
application of control effort was excessive. The main reason for this was the high frequency

variations in wand ¢ induced by the wave forces. Because of the combination of wave forces

and trim, the commanded depth was not achieved. The average depth at periscope depth was

50.75 feet, as opposed to the commanded depth of 50 feet.
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Figure 35. Basic sliding mode performance, step change approach to PD

Although the performance for the sea state three, head seas was adequate with this
controller, it did not perform well with the other sea states or headings. Because of this, it was
decided to use this control as a starting point for a performance optimization for each of the

four sea state and direction cases available.

As was done for state feedback control, the MATLAB® CONSTR function was used
to perform the optimizations. To provide a general set of design variables, the sliding mode
linear quadratic regulator program was not used to determine the control law at each step of

the optimization. Instead, the sliding surface itself was varied to change the control law.
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Figure 36. State parameters for basic sliding mode approach to petiscope depth

The formal optimization statement is:

Minimize:

(220)
j(z—zme,,,,)zd:
F(S31,532,841,542, M-, H, F) = 0 [
where:

z = depth , determined by nonlinear simulation

Iy

[ @ar
0

Zmean = >

Ly

H = Ballast added to center of buoyancy, thonsands of pounds
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F = Ballast shifted from forward to aft, thousands of pounds

Subject to:

real(eigenvalues(A,, — AZISZT NS E (221)

Deviation from the mean value of depth vice the commanded was used because of the
expected average depth error.

This approach was used for each of the four sea state cases. For sea state three (head

54.5 4
55} w 2
3
B > 2
2555 3
N 81
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Figure 37. Simulation with basic sliding mode control in sea state three (head sea direction)
seas), the optimized response is shown in Figure 37. The results of the four optimizations are

shown in Table 15. For the RMS error and maximum etrot, the optimized values are given,
along with their percentage of the initial values. In all cases, use of the optimization resulted in
reduction of the mean square depth error (measured from the average depth). Reduction of

the maximum error was also achieved.
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Sea State/Direction 3/head 3/beam 4/head 4/beam
Initial Values " '
5 1 | o0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

-0.0985 | 1.7281 | -0.0985 | 1.7281 -0.1388 1.377 -0.0932 1.7281
0.0170 | -0.0985 | 0.0170 | -0.0985 | 0.0191 -0.694 0.0170 -0.0903

KT 39.658 -24.69 39.658 -24.69 27.88 -17.34 36.32 -22.61
-632.81 429.6 -632.81 429.6 -491.0 3410 -632.77 429.7
40454 | 25027 | -404.54 | 25027 | -285.23 175.8 -370.71 229.21

0 0 0 0 0 0 0 0
m /1, 0.05/0.05 0.05/0.05 0.05/0.05 0.0445/0.0445
H/F (10° pounds) 20/0 20/0 20/0 20/0
Mean Depth (feet) 53.46 49,55 52.83 54.53
RMS Error (feet) 148 3.37 1.63 2.75
Maximum Eror (feet) 3.00 8.03 , 420 9.78
Sliding surface 0.8725 + 05063 | -0.8725+0.5063i | -0.6981+0.4820i | -0.8726 +0.4172i
eigenvalues 0.8725-05063 | -0.8725-0.5063% | -0.6981-0.4820i -0.8726 - 0.4172i
Optimized Values | s P mee EE
- = S = o : -
0 1 0 1 0 1 0 1

-0.0816 | 17244 [ -0.0196 1.884 -0.1525 | 1.3761 -0.933 1.7281
0.0205 | -0.1203 | 0.0037 | -0.0208 | 0.0176 | -0.0759 0.0170 -0.0903

KT 48.50 -30.16 8.008 -5.124 30.475 -18.97 36.322 -22.615
-631.1 42878 | -695.15 469.2 -490.8 340.74 -632.76 429.67
-494.0 305.61 -84.01 52.11 -311.5 1923 -370.75 229.24

0 0 0 0 0 0 0 0
m /T 0.0488/0.0510 0.0457/0.0457 0.0501/0.0501 0.0446/0.0445
H/F (10° pounds) 19.9/0 19.6/0.0 20.0/0 20.0/0
Mean Depth (fect) 55.44 57.61 55.53 54.57
RMS Error (feet) 0.27 (18%) 0.84 (25%) 0.683 (42%) 1.43 (52%)
Maximum Eror (feet) 0.77 (26%) 2.36 (29%) 1.92 (46%) 414 (42%)
Sliding surface ~0.8725 + 0.69451 17649 20.6968 + 054341 | -0.8726 + 0.4173i
eigenvalues -0.8725 - 0.6945i 101229 -0.6968 - 0.5434i -0.8726 - 0.4173i

Table 15. Optimized basic sliding mode control law results and performance
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3. Disturbance feedforward
The sliding mode control can be implemented with 2 disturbance feedforward to
correct average depth error. This can be implemented inside or outside of the sliding surface.

For this example, the disturbance feedforward was implemented inside the sliding surface

calculation.

o=8"x+5 (222)

Assuming that neither sliding surface is saturated, that control deflection is within
limits, and using a linear analysis, the steady state value of the depth error can be written as a
linear combination of the force and moment disturbances (Appendix B).

IIZCIFLI +C2Md (223)

s ™ Zeommande

To eliminate the depth error, it is necessaty to apply the same amount of control effort that the

steady state error provides within the sliding surface:

s (224)
SS = (Z.\'.\‘ = Zcommanded )|: S:;:I

This results in the following control law:

W= W ommanded tsi [Gl j (225)
satsign| ——
(ShlJ _ [Kll KIZ Kl3 0:} 9~ 9 commanded + K-"n K-"lz g 8 ¢1
6‘\17 Ky Kpn Ky 0 6 =6 commanded 21 S22 ; (62 )
T]z satsi gn| =
z— 2

~
=

2 commanded

T
1 0 W= W ommanded (226)
[61 j}__ 0 1 q — 9 commanded +[C1S4l C2S41 Fd
) Sy S| | 0 Ocommanded CiSn CSp M,
541 S42 2~ Zommanded
<. | @)

where the force and moment disturbances are filtered.
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The initial sliding surface and gains from the basic sliding mode control law was used

as the starting point for optimization. The formal optimization statement is:

(228)

7

2
J. (Z ~ Zcommanded ) dt
0

F(S31,832.541,540, @0, M, H F) = ;
;

Subject to:

real(eigenvalues(Ay, — AZ,SZT NS Eoax (229)

This approach was used for each of the four sea state cases. For sea state three (head
seas), the optimized response is shown in Figure 38. The results of the four optimizations are
shown in Table 16. For the RMS error and maximum error, the optimized values are given,

along with their percentage of the initial values.
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Sea State/Ditection 3/head

3/beam

Initial Values

S

0 0 0 0 0 0 0 0
®,, (radians/second) 0.25 0.25 0.25 0.25
m/m, 0.05/0.05 0.05/0.05 0.05/0.05 0.05/0.05
H/F (10 pounds) 20/0 20/0 20/0 20/0
Mean Depth (feet) 55.28 54.99 55.10 5341
RMS Error (feet) 0.4181 1.50 1.01 7.04
Maximum Etror (feet) 1.225 3.85 3.50 18.75
Sliding surface -0.8725 + 0.50631 -0.8725 + 0.5063i -0.8725 + 0.50631 -0.8725 + 0.5063i
eigenvalues -0.8725 - 0.50631 -0.8725-0.50631 | -0.8725-0.50631 -0.8725 - 0.50631
Optimized Values
S 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

-0.0981 1.7281 -0.1255 | 21291 -1.9567 | 3.8086 | -0.1167 1.8775
0.0166 0.096 0.0400 | -0.0473 | -0.0445 | -0.1476 | -0.0155 | -0.0240

KT 38.67 -24.08 19.16 -11.70 58.9 -37.3 9.906 -5.992
-632.8 429.65 | -795.53 | 530.65 | -1496.0 948.4 -693.54 467.3
-394.5 2441 -196.91 118.74 -599.1 3775 -95.02 60.9

0 0 0 0 0 0 0 0
,, (radians/second) 0.25 0.350 0.267 0.245
m /1, 0.05/0.05 0.0542/0.0578 0.1853/0.0544 0.0596/0.0548
H/F (10° pounds) 20/0 20.2/-0.1 20.7/13 20.1/0.0
Mean Depth (feet) 5522 55.47 55.45 2.00
RMS Error (feet) 0.405 (97%) 1.22 (81%) 1.01 (100%) 1.99 (28%)
Maximum Error (feet) 136 (111%) 3.20 (83%) 2.52 (12%) 4.93 (26%)
Sliding surface ~0.8723 + 0.4813i 11.8706 -3.4649 11,7409
eigenvalues -0.8723 - 0.4813i 0.2984 102992 -0.1211

Table 16. Optimized sliding mode control with disturbance feedforward results and
performance
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Figure 38. Simulation using sliding mode control with disturbance feedforward
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4. Integral control
The sliding mode control law can be augmented with integral control on depth to

remove the average depth error. This results in the following control law:

[w— W commanded 1 p (230)
- S Nt B
[5bp } |:K] 1 K]Z K13 K14 O- Z Zcommunded K.\'“ Kxu nl satﬂgn ¢l
= - nded |t
5, Ky Kpn Kpn Ky 0f commanes Koy Ky . 1902
2= Zeommanded U7 satsign
, 3
L ! J
i 1 0 T _W = Weommanded | (231)
c 0 1 9 ~ 9 commanded
1
|: :I = S3l S32 0- ecommanded
o,
S 41 S42 2= Zcommanded
[Ss1 Ssa [ z ]
16] < 8,0, (232)

After a stable set of gains was determined, the controller was optimized to minimize

the deviation from the commanded depth. The formal optimization statement is:

Minimize:
1 (233)
J (z- Zcommanded )2 dt
0
F(S31,832,541,542,551, 852, T, H, F) = ;
f
Subject to:
real(eigenvalues(Ay — Ay S3)) < E g (234)

This approach was used for each of the four sea state cases. For sea state three (head

seas), the optimized response is shown in Figure 39. The results of the four optimizations are

shown in Table 17.
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Sea State/Direction 3/head 3/beam 4/head 4/beam
Initial Values ‘ : L . !
S 1 0 1 | o 1 0 1 0
0 1 0 1 0 1 0 1
-0.1038 | 1.7582 | -0.1038 | 1.7582 | -0.1038 | 1.7582 | -0.1038 1.7582
0.0179 | -0.1038 | 0.0179 | -0.1038 | 0.0179 [ -0.1038 | 0.0179 -0.1038
0.0005 | -0.0031 ] 0.0005 | -0.0031 | 0.0005 { -0.0031 | 0.0005 | -0.0031
KT 41.79 -26.01 41.79 -26.01 41.79 -26.01 41.79 -26.01
-645.08 4372 -645.08 437.2 -645.08 4372 -645.08 4372
-426.14 | 263.63 -426.14 | 263.63 -426.14 | 263.63 -426.14 263.63
1.268 -0.7835 1.268 -0.7835 1.268 -0.7835 1.268 -0.7835
0 0 0 0 0 0 0 0
min, 0.05/0.05 0.05/0.05 0.025/0.025 0.05/0.05
H/F (10% pounds) 20/0 20/0 20/0 20/0
Mean Depth (feet) 54.82 54.80 55.00 54.73
RMS Error (feet) 0.4671 1.47 0.707 133
Maximum Error (feet) 1.14 4.23 2.03 31.62
Sliding surface -0.8722 + 0.5063i -0.8722 + 0.50631 -0.8722 + 0.50631 -0.8722 + 0.5063i
eigenvalues -0.8722 - 0.50631 -0.8722 - 0.50631 -0.8722 - 0.50631 -0.8722 - 0.5063i
-0.0316 -0.0316 -0.0316 -0.0316
Optimized Values
S 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
-0.0106 | 0.2485 | -0.0233 | 0.5120 -0.0767 1.5995 -0.1428 3.7927
0.0195 | -0.0202 | 0.0197 | -0.0152 | 0.0118 | -0.0766 | 0.0177 | -0.0624
0.0002 | -0.0010 | 0.0001 | -0.0007 | 0.0005 | -0.0031 | 0.0003 0.0006
KT 7.931 -4.920 5.945 -3.682 30.73 -19.18 250 -15.6
-32.52 56.91 -139.4 123.3 -580.47 397.3 -1469.6 950.0
-83.24 50.04 -63.13 37.51 -314.13 194.52 -256.2 157.8
0.3965 -0.245 0.271 -0.1681 1.266 -0.783 0.20 0.10
0 0 0 0 0 0 0 0
i, 0.0468/0.0464 0.0461/0.0453 0.025/0.025 0.0436/0.0553
H/F (10° pounds) 19.6/-0.1 19.6/0.0 20.0/0.0 19.4/-0.1
Mean Depth (feet) 54.98 55.01 55.02 55.16
RMS Exror (feet) 0.2345 (50%) 0.713 (49%) 0.693 (98%) 147 (11%)
Maximum Error (feet) 0.789 (69%) 1.90 (45%) 1.92 (95%) 415 (13%)
Shding surface -0.1090 + 0.43141 -0.2418 + 0.28711 -0.7834 + 0.32601 -3.6194
eigenvalues —0.1090 - 0.4314 -0.2418 - 0.28711 -0.7834 - 0.32601 -0.1971
-0.0500 -0.0481 -0.0446 0.0061

Table 17. Optimized sliding mode integral control law results and performance
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D. CONCLUDING REMARKS

A compatison between the quality of control achieved by sliding mode control could
conclude that the sliding mode control was infetior to state feedback control. This comparison
would, however, neglect the added benefits of sliding mode control. The robust character of
sliding mode control with the ability to provide reliable control for submarine control given
uncertain hydrodynamic coefficients has been demonstrated for the NPS autonomous
underwater vehicle program (Hawkinson, 1990).

The sliding mode optimizations did not substantially reduce the control chatter and
attendant high actuation rates. Variations of the sliding mode boundary thickness did not
alleviate the chatter.

Table 18 gives a summary of the RMS error achieved by each of the sliding mode
optimizations. For comparison, it also includes the full state feedback results from Chapter IV.
Although these were larger than the corresponding full state feedback cases, the sliding mode
control proved to be much more robust in response to step changes in commanded depth. The
sliding surface eigenvalues exhibited much more damping than the cotresponding cases of full
state feedback control. Also, it seemed to provide a more realistic average pitch angle for

petiscope depth operations.

Sea State/Direction
Control Scheme
Full State 0.037 0.2638 0.2683
Basic sliding mode 0.27 0.84 0.683 1.43
Full State with feedforward 0.0928 0.4121 0.400 0.792
Sliding mode with disturbance feedforward 0.405 122 1.01 1.99
Full State integral 0.0414 0372 0.536 1.96
Sliding mode with integral control 0.2345 0.713 0.693 1.47

Table 18. Optimized RMS error (feet) of sliding mode control and full state feedback
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VI. GRAPHICAL DISPLAY

A. INTRODUCTION

In conducting ship control at petiscope depth, a submarine diving officer relies on a
variety of indications, meters, and some verbal reports to maintain the ship within the required
depth band. In addition to the displayed parameters, the ship’s control party also has their
inertial reference, or “the seat of the pants”. Itis perhaps the inertial reference which
differentiates between great ship’s control parties, and the merely adequate.

A submarine diving officer must track status of many ship’s systems in addition to ship

control. The items which the diving officer must monitor include:

eMast positions

eProximity of any portion of the ship to broaching (sail, rudder, mast fairing)
eWater depth (general terms)

oShip’s relationship to the submerged operating envelope

oTrim

eSpeed

eWater density

#Ship’s evolutions (trash disposal, ventilation, etc.)

eTowed array, floating wire antenna

In many cases, the tracking tool most used is the diving officer’s mental picture.
Unfortunately, the ability to keep a clear status on many issues varies with fatigue and among
individuals. This chapter gives the current conditions of the interface between the diving

officer and ship’s control, and proposes a different display medium to improve operations.

B. CURRENT DIVING OFFICER INTERFACE

To maintain a complete status, the diving officer has few tools at his disposal. He must
rely on looking around at several different panels to get mast status, soundings, and water
density while supervising the planesman. If an unplanned event, for example broaching,

occurs the only record for reconstruction is the memory of the operators.
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The gauges and meters used for ship control, while designed with generally appropsiate
time constants, are not adaptable for a given circumstance. For the most patt, the same
indications are used for high speed transit, periscope depth, and tactical operations. Figure 40
and Figure 41 show some of the indications used on board the USS Nautilus (SSN 571).
Although Nautilus is now a museum, the design of submarine ship’s control panels has not

changed significantly.

]
iR e R RGNy SO

Figure 41. USS Nautilus pitch angle indication

‘T'he current system of ship status display is very reliable, with redundant indications for
important items and some purely mechanical indicators. It falls short in the area of presenting an
integrated status. It is the writers opinion that the display system degrades the petrformance of

the ship’s control party. With some parameters not displayed and others not conditioned for the
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ship’s operating mode, operation near the surface in heavy sea states is extremely difficult.
Skilled operators rely upon the existing indications, as well as “the seat of their pants” to
maintain depth. Even so, it is a solid accomplishment to keep from broaching during extended
petiscope depth operations.

Even more complex are operations in shallow water. The proximity to grounding
complicates all aspects of ship control. The diving officer must be constantly aware of the water
beneath the keel available for casualty recovery. Because nonzero pitch angles will cause one end

of the ship to be deeper than indicated, this must also be accounted for.

C. PROPOSED DISPLAY

To incorporate the desired indications in a single display, a radically different approach is
taken. Rather than rely on meters and gauges for the state of the ship, a screen is used. Figure
42 shows the proposed display. A crude version of this display was developed using the
SIMULINK® Asimation Toolbox® (Figure 43).

o

[ 0.0 Feel/Sec

W3 6.0Kis
70.0 Feet

6K heavy n
K aft

Towed Arrcry

Last Sounding

. Pesiscope Vieve

Figure 42. Proposed graphical display of submarine control status
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Figure 43. SIMULINK® animation of depth, pitch angle, and planes angles

By integrating the ship status into one display, numerous improvements can be
realized. The relationship of the submarine to the bottom and the sutface is clearly shown.
With the bottom contour information from a database, the diving officer has a continuous
sense of the ship’s proximity to grounding. In addition as sounding data is obtained, it can be
displayed.

The use of a digital display paradigm allows the display to be modified to support
different operating modes. Because of the relationship between ship control and safety, the
settings would be chosen based on a commanding officer approved doctrine. This would
allow the operators to adjust the display system to best fit needs, and adapt it to new
circumstances or missions. Alerts and alarms could readily added as the situation warranted.

To assist the diving officer in maintaining status on the wave forces, several bar graphs
were added to show the net force that the ship’s angle and planes were applying at a given

time. These quantities would be filtered to provide a relevant average. Provided the averaging
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interval was appropriate, this would queue the diving officer to order trim changes in response
to changing environmental conditions.

The periscope video in the bottom left hand corner would provide critical feedback for
the dive. This would make the scope’s position relative to the surface apparent (another
indication of depth), and allow the diving officer to be somewhat aware of the tactical
situation. A close or new contact would prompt the diving officer to review mast exposure,
which is also on the same display.

Safety of shallow water operations would be enhanced by presenting a clear picture of
the ship’s relationship to the bottom. During evasive action, the ship’s control party and the
Officer of the Deck would be working with common knowledge of available water beneath the
keel, and the contour ahead of the ship.

Ship’s status could be recorded, to allow playback for the reconstruction of unplanned

events. Figure 44 shows a possible data architecture to suppott the display.
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Figure 44. Graphical display data paths

D. CONCLUDING REMARKS

The integration of the pertinent ship parameters in one display should yield dramatic
improvements in submarine petiscope depth operations. The diving officers improved
awareness should reduce fatigue levels, allow for slightly lower speeds for a given sea state
(reducing mast feather), and enable a much more complete environmental picture for the ship’s
control party. This awareness should increase the confidence of the ship’s control party during
demanding shallow water operations, reduce the likelihood of grounding or broaching, and

provide an improved level of support for the Officer of the Deck.
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VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

As additional states were added to the control laws, the level achieved by the control
law optimizations generally improved. For the full state feedback control cases, the depth
control exceeded, in the authors expetience, what is achievable by manual control.

Ship’s control parties use more information about the state of the ship than is available
from the explicit indications. Also, the success of the disturbance feedforward control suggests
that averaged net force and moment would be of value to the ship’s control patty.

Sliding mode control provided well damped dynamics, with a robust behavior in
response to changes in commanded depth. Although sliding mode control did not achieve the
very low RMS errors of full state feedback, the gains which it employed were smaller and more

realistc.

B. RECOMMENDATIONS

Although very good depthkeeping was achieved with state feedback control, the
optimization schemes used resulted in control surface chatter, and very high control surface
rates. To improve the quality of the model and provide more realistic planesman action

several features could be added to the control laws and optimization routines:

e Investigate other sea states, speeds and sea directions

e Incorporate control surface rate limits

e Include control surface chatter in the optimization objective functions
e Use of Kalman filtering to provide state estimation and filtering

o Investigate the use of depth rate for feedback control in place of heave

The application of a new display system to an operating submarine is a major
undertaking. Recommended steps to find a new manual submatrine depth control paradigm

are:

e Application of system identification techniques to submarine operating data to

investigate the nature of the human control
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o Trials of a display onboard an appropriate submarine and or a submarine dive trainer
e Use of recorded submarine operating data to provide for “instant replay” training of

ship’s control personnel
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APPENDIX A

All computer code and SIMULINK® models used in this thesis are available from
Professor Fotis Papoulias, Naval Postgraduate School. The computer programs and
SIMULINK® models used were:

Programs:

SUBOFF.M!- initializes SUBOFF hydrodynamic coefficients

AXNL.M!- performs nonlinear Ax+E[qq;wq] calculation

SMLQR!.M- determines MIMO sliding mode control law using Utkin’s method (LQR)
WF_INIM- reads wave data files, processes

WFORCE.M- calculates wave forces for a given depth and time

SB_INI.M- initializes model variables for MIMO vertical plane submarine model

SBI_INILM- initializes model variables for MIMO vertical plane submarine model with integral

depth control

SB_SM.M- calculates MIMO SM control law from Q matrix

SB_SS.M- calculates MIMO SM control law from sliding surface

SB_SMFF.M- determines the feed forward mattix for a given sliding mode control law
SB_PD.M-state feedback control law

SB_PDFF.M- determines the feed forward matrix for a state feedback control law
OBJ2.M - Objective function for pitch / depth feedback optimizations

OPT2A M- Optimization program for OBJ2.M and sea state three (head seas)
OPT2B.M- Optimization program for OBJ2.M and sea state three (beam seas)
OPT2C.M- Optimization program for OBJ2.M and sea state four (head seas)
OPT2D.M- Optimization program for OBJ2.M and sea state four (beam seas)
OBJ2ff.M - Objective function for pitch / depth feedback with disturbance feedforward
optimizations

OPT2FFA.M- Optimization program for OBJ2FF.M and sea state three (head seas)
OPT2FFB.M- Optimization program for OBJ2FF.M and sea state three (beam seas)
OPT2FFC.M- Optimization program for OBJ2FF.M and sea state four (head seas)

1 Given after list of programs
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OPT2FFD.M- Optimization program for OBJ2FF.M and sea state four (beam seas)
OBJ21.M - Objective function for pitch / depth feedback with integral depth control
optimizations- ‘

OPT2IA.M- Optimization program for OBJ2L.M and sea state three (head seas)
OPT2IB.M- Optimization program for OBJ21.M and sea state three (beam seas)
OPT2IC.M- Optimization program for OBJ21.M and sea state four (head seas)
OPT2ID.M- Optimization program for OBJ21.M and sea state four (beam seas)
OBJ3.M - Objective function for full state partial distribution feedback optimizations
OPT3A.M- Optimization program for OBJ3.M and sea state three (head seas)
OPT3B.M- Optimization program for OBJ3.M and sea state three (beam seas)
OPT3C.M- Optimization program for OBJ3.M and sea state four (head seas)
OPT3D.M- Optimization program for OBJ3.M and sea state four (beam seas)
OBJ3FF.M - Objective function for full state feedback with disturbance feedforward
optimizations

OPT3FFA.M- Optimization program for OBJ3FF.M and sea state three (head seas)
OPT3FFB.M- Optimization program for OBJ3FF.M and sea state three (beam seas)
OPT3FFC.M- Optimization program for OBJ3FF.M and sea state four (head seas)
OPT3FFD.M- Optimization program for OBJ3FF.M and sea state four (beam seas)
OBJ31.M - Objective function for full state feedback with integral depth control optimizations
OPT3IA.M- Optimization program for OBJ31.M and sea state three (head seas)
OPT3IB.M- Optimization program for OBJ3L.M and sea state three (beam seas)
OPT3IC.M- Optimization program for OBJ3LM and sea state four (head seas)
OPT3ID.M- Optimization program for OBJ3L.M and sea state four (beam seas)
OBJ3.M - Objective function for full state feedback optimizations

OPT4A.M- Optimization program for OBJ4.M and sea state three (head seas)
OPT4B.M- Optimization program for OBJ4.M and sea state three (beam seas)
OPT4C.M- Optimization program for OBJ4.M and sea state four (head seas)
OPTA4D.M- Optimization program for OBJ4.M and sea state four (beam seas)
OBJ4FF.M - Objective function for full state partial distribution feedback with disturbance
feedforward optimizations |
OPT4FFA.M- Optimization program for OBJ4FF.M and sea state three (head seas)
OPT4FFB.M- Optimization program for OBJ4FF.M and sea state three (beam seas)
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OPTAFFC.M- Optimization program for OBJ4FF.M and sea state four (head seas)
OPT4FFD.M- Optimization program for OBJ4FF.M and sea state four (beam seas)
OBJ41.M - Objective function for full state partial distribution feedback with integral depth
control optimizations

OPTA4IA.M- Optimization program for OBJ4LM and sea state three (head seas)
OPT4IB.M- Optimization program for OBJ41.M and sea state three (beam seas)
OPT4IC.M- Optimization program for OBJ41.M and sea state four (head seas)
OPT4ID.M- Optimization program for OBJ4L.M and sea state four (beam seas)
OBJ7.M - Objective function for sliding mode control optimizations

OPT7A.M- Optimization program for OBJ7.M and sea state three (head seas)
OPT7B.M- Optimization program for OBJ7.M and sea state three (beam seas)
OPT7C.M- Optimization program for OBJ7.M and sea state four (head seas)
OPT7D.M- Optimization program for OBJ7.M and sea state four (beam seas)
OBJ7FF.M - Objective function for sliding mode control with disturbance feedforward
optimizations

OPT7FFA.M- Optimization program for OBJ7FF.M and sea state three (head seas)
OPT7FFB.M- Optimization program for OBJ7FF.M and sea state three (beam seas)
OPT7FFC.M- Optimization program for OBJ7FF.M and sea state four (head seas)
OPT7FFD.M- Optimization program for OBJ7FF.M and sea state four (beam seas)
OBJ71.M - Objective function for sliding mode control with integral depth control
optimizations

OPT7IA.M- Optimization program for OBJ71.M and sea state three (head seas)
OPT7IB.M- Optimization program for OBJ7LM and sea state three (beam seas)
OPT7IC.M- Optimization program for OB]71.M and sea state four (head seas)
OPT7ID.M- Optimization program for OBJ7L.M and sea state four (beam seas)

OBJ7.M - Objective function for full state feedback optimizations

Models:
SMSW.M- MIMO sliding mode control submarine control model, with wave forces and trim
SMSWFEFF.M- Same as SMSW.M, with disturbance feedforward

SMT.M- used for determining steady state response, does not return the x state

PDSW.M- MIMO state feedback control submarine control model, with wave forces and trim
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PDSWFFE.M- Same as PDSW.M, with disturbance feedforward
PDT.M- used for determining steady state response, does not return the x state

Wave Force Data files:

For the first order motions / second order forces, each displacement / force is given in
terms of a complex number.

Wave spectral data files
[wave frequency (rad/sec),S(®) (), amplitude (feet), phase (rad)]

SPEC_A.TXT
SPEC_B.TXT
SPEC_C.TXT
SPEC_D.TXT

First order motions
[® (rad/sec), Mencounter (rad/sec), surge, sway, heavy, pitch, yaw, roll]

LMOT_ATXT
LMOT_B.TXT
LMOT_C.TXT
LMOT_D.TXT

Second order forces
[ (rad/sec), @ (rad/sec), Fs, Fy, Fz, My, My, M. ]

FORC_A.TXT
FORC_B.TXT
FORC_C.TXT
FORC_D.TXT
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SUBOFF.M

function [A,B,MMILEmat, D,WS]=suboff(U);

% SDV hydrodynamic data, TM 231-78 page 6
ff=2; %fudge factor to make planes authority realistic for 300 ft sub

g=32.2;%
L=300; % feet

p=1.94; % slug/ft"3;

m = 0.018296*0.5*p*L"3;
Iz =0.001084*0.5*p*L"5;
Iy = 0.00108*0.5*p*L"5;
mxg =-0.127467E-4;

zgb=1; % feet
xgb=0; % feet

Mqdot =-0.000860*0.5*p*L"5;
Mwdot =-0.000561*0.5%p*L4;
Mq  =-0.003702%0.5*p*L " 4*U;
Mw = 0.010324%0.5%p*L"3*U;

Mds =-ff¥0.002409%0.5*%p*L"3*¥U"2;
Mdb =-Mds/4;

Zqdot =-0.000633*0.5*p*L."4;
Zwdot =-0.014529*0.5*p*L"3;

Zq =-0.007545*0.5*p*L"3*U;
Zw  =-0.013910%0.5%p*L"2*U;

Zds  =-ff*0.005603*0.5*p*L"2*¥U"2;
Zdb  =Zds/2;

% define mass matrix, compute mass matrix inverse
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mm=eye(4);
mm(1,1)=m-Zwdot;
mm(1,2)=-Zqdot;
mm(2,1)=-Mwdot;
mm(2,2)=Iy-Mqdot;

A=zeros(4,4);
A(LD)=2Zw;
A(1,2)=m*U+Zq;
A(2,1)=Mw;
AQR2)=Mg;
A(2,3)=-2gb*W,
A(3,2)=1;
A@AD=1,
A4,3)=-U;

B=[ Zdb Zds;Mdb Mds;0 0;0 0];
MMI=inv(mm);

A=MMI*A;

B=MMI*B;
Emat=MMI(1:2,1:2)*[m*zgb,0;0,-m*zgb];
% diameter and surface area calculation

D=L/8.575;

WS=67.651%(L/13.9792)"2;
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AXNLM

functon ax=axnl(x)

global Amat Emat
n=max(size(x));

a=Amat;
a(4,1)=Amat(4,1)*cos(x(3));
x(3)=sin(x(3));

ax—a*x;

ax(1:2)=ax(1:2)+ Emat*{x(2)"2;x(2)*x(1)];
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SMLQR.M
function [k,s,ks,e]=smlqr(a,b,q)

% [k,s,ks,e]=smlqr(a,b,q) determines the sliding

% mode control law for the system
% xdot=a*x+b*u where

% u=-kx-kn*satsgn(sigma) and

% sigma=s*x. q is a positive definite
% symmetric weighting matrix

Yo used in assigning error weights

% (LQR) to the states. Uses Utkin's method
% as detailed in Hawkinson pp10-17

[n,m]=size(b);

% do transformation if required
if norm(b(m+1:n,1:m))>eps™0.5

[b1]=qr(b);
b1=b1(1:m,1:m);
t=t;
else
t=eye(n);
b1=b(1:m,1:m);
end

q=tqHe;
a=tka*t;

q11=q(1:m,1:m);
q12=q(1:m,m+1:n);
q21=q(m-+1:n,1:m);
q22=q(m+1:n,m+1:n);

al1=a(1:m,1:m);
al12=a(l:mm+1:n);
a21=a(m+1:n,1:m);
a22=a(m+1:n,m+1:n);

as=a22-a21*inv(q11)*ql2;
qs=q22-q21*inv(ql1)*q12;

kt=are(as,a21*inv(q11)*(@@21’) ,qs);

c2=(inv(ql1)*(q12+a21)*kt)’;

122



k=-[inv(b1)*(a11+c2*a21),inv(b1)*(a12+c2*a22)]*t;
s=rref([eye(m); c2]™*t)';
ks=-inv(s"*b);

e=eig([a+[bl;zeros(n-m,m)]¥k*t]);
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APPENDIX B

MAPLE® Solutions

Determination of MIMO state feedback control steady state

Determination of MIMO sliding mode control steady state
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This maple script determines the steady state response in the vertical plane

using MIMO state feedback control. Constant disturbances are assumed and the
linear equations of motion applied to find the steady state depth error. It

is also assumed that both control deflections are less than maximum.

EQ1 and EQ2 are the heave and pitch linear equations of motion

EQ1:=(all*w*u+al3*theta+bll*u“2*dl+bl2*uA2*d2)+Fd;

EQI =all wu+al30+bllu®dl +bi2u®d2+Fd

EQ2 :=(a2l*w*uta23*theta+b21*u”2*d1+b22*u"2*d2)+Md;
EQ2 :=a2l wu+a236+b2] W2 dl+b22 u? d2 + Md

readlib(isoclate):

w := theta*u;
w=0u

The linear state feedback laws at steady state are:

dl := Kll*w+Kl3*theta+Kl4*z;
dl =K110u+KI36+Kl4z

dz2 :

]

K21*w+K23*theta+Kl4*z;
d2:=K210u+K230+KIl4z

After the application of the control laws, the equations of heavy and pitch
become:

EQ1=0;
all0u2+al30+bllu (KI10u+KI30+KI4z)+bi2u? (K21 0 u+K230+KI42)
+Fd=0 '

BEQ2=0;
021 6 u+a236+b21 u? (K110 u+KI30+KI147)+b22u> (K21 0 u+K230+KI47)
+Md=0

Remove z from EQl and EQ2

Fl:=coeff(collect (expand(EQl),z),z,1);
Fl=bI2 u? K14+ b11 u® K14

F2:=coeff (collect (expand{EQ2),z),z,1);
F2 = b22 u® K14+ b2] u® K14

EQ3:=simplify(EQl—EQ2*Fl/F2);
£03 = (a1l 0u? b22 +al1 0 u2 b21 + b1l u® K110 b22 + b11 u* K130 22 +al3 6 b22
a3 0b2] —a23 6 b1l +Fdb22+Fd b2l — Mdbl2 - Md b1l +bI2 u® K21 0 b21
b2 w2 K230 b2] —a2] 842 b12—a218u2 b1l —b21 u3 K110 b12 - b21 u” K13 8 bI2
p22 k3 K210 b1 — 22 u2 K23 8 b11 - a23 0 b12)/(b22 + b21)

isolate (EQ3, theta);
0= (-Fd b22 — Fdb2] + Md b12 + Md b11)/(all u? b22 +all u® b21 +b11 w3 K11 b22

bl w2 KI13b22 +al3 b22 +al3 b2l —a23 bI1 +b12 ud K21 b21 +b12 u® K23 b21
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— a2l ul bI12— a2l u? b11-b21 w3 K11 b12 - b21 u2 K13 bI2 — b22 13 K21 bl1

—b22u? K23 b1 - a23 b12)

Find the steady state value of theta by setting EQ3=0
> thetass:=coeff (collect (EQ3,theta), theta,0)/coeff(collect (EQ3, theta), theta,l);

thetass = (Fd b22 + Fd b21 - Md b12 - Md b11)/(all u® b22 + al1 u® b21
+b11 w3 KI11b22+b11 u? K13 522 + al3 b22 +al3 b21 — a23 b11 +b12 13 K21 b21
+b12u® K23 b2] — a2] u® b12 - a21 u? b1l - b21 u3 K11 b12 - b21 12 K13 bi2
—b22u3 K21 b11 - 22 u® K23 b11 - a23 b12)

Substitute thetass into EQl and solve for steady state z
> temp:=coeff(collect(EQl,z),z,0)/coeff(collect(EQl,z),z,1);

all Ou®+al30+bI1u® (K110 u+KI30)+bI12u’ (K210 u+K230)+Fd
bI2u? K14 +b11 u2 K14

temp =

> Z8Ss :=
coeff (collect(temp, theta), theta, 1) *thetass+coeff (collect (temp, theta), theta,0)

\Y

zss = a3+ 11 u2 (K11 u+KI3)+bI12 % (K21 u+K23) +all u2)
(Fd b22 + Fd b21 — Md b12 - Md b11)/((b12 W2 k14011 w2 k14) (a1l u? b22

vall ul 21 +b11uS K11 022 +bl11 u? KI3b22 +al3b22 +al3 b2] —a23 bll
+bI2uS K21 621 +bI12 u? K23 b21 — a2l u® b12 — a2l u® bl - b21 u> K11 b12

—b21 W2 K13b12 - 522 43 K21 b11 - b22 u® K23 b11 - a23 b12))
Fd

bI2 u? K14 +b11 u? K14

Determine the coefficients Cl and C2 such that zss=C1*Fd+C2*Md
> Cl:=simplify(coeff(collect(expand(zss),Fd),Fd,1));

c1=(2al111? b22+2 all u® b21 = a21 u® bI2 - a21 4> b11 — a23 b12 +2 al3 b21
—a23bI1+2al3b22+2b11 ud K11 b22+2b11 u? K13 b22 — b21 u> K11 bi2
+2b12 w3 K21 b21 +2 b12 u® K23 b21 - b22 u> K21 b11 — b22 u® K23 b11
021 u? KI3b12+b12 42 K23 622 + b11 w3 K11 b21 +b12 u3 K21 b22 + b11 u® K13 b21)
/(u2 K14 (b12+b11) (all u? 522+ all u® b21 + b11 u3 K11 522 + b11 u2 K13 b22

+

+al3b22 +al3b2] —a23b11 +bI12 u> K21 b21 +b12 u2 K23 b21 — a2l u? bi2
a2l U b1l = b21 uS K11 bI12 - 021 u K13 b12 - b22 w3 K21 b11 — b22 u2 K23 b1

—a23b12))
> C2:=simplify(coeff (collect (expand(zss),Md),Md,1));

c2:=-(ar3+b11u® K11+ 611 2 K13+ 0123 K21+ 512 u® K23 + a1 142 [((
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011 w2 b22 +all W b21 + b1l u> K11 b22+b11 u” K13b22 +al3 b22 +al3 b21 —a23 bl1
12 a3 K21 621 + b12 W2 K23 621 — a21 k2 b12 - a21 u® b11 - b21 1> K11 bI2

b2l W2 K13 bI2 - b22 u® K21 b11 - b22 u® K23 b11 - a23 b12) u® K14)

Check that zss=Cl*Fd+C2*Md
> eq6:=simplify(zss—Cl*Fd—CZ*Md);

eq6 =0
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This maple script determines the steady state response in the vertical plane
with basic MIMO sliding mode control. Constant disturbances are assumed and
the linear equations of motion applied to find the steady state depth error.
Tt is also assumed that both control deflections are less than maximum and
that neither sliding surface is saturated.

EQLl and EQ2 are the heave and pitch linear equations of motion

EQl:=(all*w*u+al3*theta+bll*u~2*dl+bl2*u”2*d2)+Fd;

EQl :=allwu+al30+bll u? dl +b12 w2 d2+ Fd

EQ2 :=(a2l*w*u+a23*theta+b21*ut2*dl+b22*u”2*d2)+Md;
EQ2 = a2l wu+a23 0 +b21 u® dl +b22 u* d2 + Md

readlib(isolate):

w := theta*u;
w: =0 u

The linear state feedback laws at steady state are:

dl := Kll*w+Kl3*theta+Ksll*etal*sigmal/phil+Ksl2*eta2*sigma2/phi2;
Ksll etal sigmal Ksl2 eta2 sigma2
dl =KI110u+KI30+ L UL, £L4
phil phi2
d2 .= K21l*w+K23*theta+Ks2l*etal*sigmal/phil+Ks22*eta2*sigma2/phi2;

Ks21 etal sigmal 4 Ks22 eta2 sigma?2
phil phi2

d2:=K210u+K230+

sigmal:=S11*w+S1l3*theta+Sl4*z;
sigmal :=S110u+SI130+S14z

sigma2:=S821*w+823*theta+S24*z;
sigma2 =821 O u+S230+S524 2

After the application of the control laws, the equations of heavy and pitch
become:

EQ1=0;

all 0u2+al30+bl1 u? (Ku‘eu+1<13e+ Kslletal (S118u+S138+5142)

phil

N Ksl2 eta2 (S21 0 u+S52306+824 z)

)+b12 u? (KZ] 0u+K230

phi2
N Ks21 etal (S11 8th1+ S136+514z) N Ks22 eta2 (S21 Bhu.2+ 5230+ 8524 z))+ Fd=0
phi phi

EQ2=0;

0210 u?+a230 +b21 uz(K11eu+K13e+Ks”e’“](5119”+5139+514Z)

phil

N Ks12 eta2 (S2]1 O u+ S236+824 z)

)+b22 u? (KZ] Ou+K236

phi2
N Ks21 etal (S11 9th1+ S130+S514z7) N Ks22 eta2 (521 9th2+ 5230+ 524 Z))+Md:0
phi phi

" Remove z from EQ1l and EQ2

Fl:=coeff (collect (expand (EQl),z),z,1);
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b1l u®Ksi2 eta2 $24 b1l u® Ksll etal SI14 _bI2 u” Ks22 eta2 §24

Fl: - + ;
phi2 phil phi2
, b2 u? Ks21 etal S14
phil

> F2:=coeff(collect (expand(EQ2),z),z,1);
_ b21u KsI2eta2 524 b2l u’ Ksll etal SI4 b2 u” K522 eta2 $24

F2: +
phi2 phil phi2
, b2 u? Ks21 etal S14
phil

> EQ3:=simplify (EQ1-EQ2*F1/F2);

EQ3 = -(-b11 u3 Ksl1 etal SI10 b22 K522 eta2 S24 - b11 u® K11 8 phil b22 K522 eta2 $24
b1l w2 Ksll etal S13 © b22 Ks22 eta2 $24 — b1l u> Ks12 eta2 S21 8 b22 Ks21 etal S14
b1l W2 KsI2 eta2 S23 0 b22 K521 etal S14 - b11 u> K11 6 phi2 b22 Ks21 etal S14
— b1l u? K130 phil b22 Ks22 eta2 $24 — b11 u® K13 © phi2 b22 Ks21 etal S14
— all 0 u? phil b21 Ks12 eta2 $24 — all © u® phi2 b21 Ks11 etal SI14

—all 8 u? phil b22 Ks22 eta2 S24 —all 8 u? phi2 b22 Ks21 etal S14
—al3 0 phil b21 Ksi2 eta2 S24 — al3 0 phi2 b21 Ksl1 etal S14
—al3 0 phil b22 Ks22 eta2 S24 — al3 © phi2 b22 Ks21 etal S14

-bl2 w3 K21 0 phil b21 Ks12 eta2 S24 — bl2 w3 K21 0 phi2 b21 Ksl1 etal S14
-bl2 u2 K23 0 phil b21 Ks12 eta2 S24 —bi2 u2 K230 phi2 b21 Ksl1 etal S14
-bl2 u3 Ks21 etal SI110 b21 Ksl12 eta2 S24 —bli2 u2 Ks21 etal S130 b21 Ks12 eta2 S24

-bl2 u3 Ks22 eta2 S21 0 b21 Ksi1 etal S14 —bl2 u2 Ks22 eta2 S23 0 b21 Ksl1 etal S14
— Fd phil b21 Ks12 eta2 S24 — Fd phi2 b21 Ks11 etal S14 — Fd phil b22 Ks22 eta2 524

— Fd phi2 b22 Ks21 etal S14 +a2l 0 u? phil bll Ks12 eta2 524
+ 421 0 12 phi2 b11 Ksl1 etal S14+a21 8 u® phil bi2 Ks22 eta2 524

+a21 0 u? phi2 b12 Ks21 etal S14 +a23 0 phil bl] Ks12 eta? 524
+a23 0 phi2 bll Ksll etal S14 + a23 0 phil b12 Ks22 eta2 524

423 0 phi2 b12 Ks21 etal S14+b21 u> K116 phil bI2 K522 eta2 524

+ b21 13 K110 phi2 b12 Ks21 etal SI4+b21 u® K130 phil b12 K522 eta2 524

+ 121 u? K130 phi2 b12 Ks21 etal S14+b21 u> Ksl1 etal S116 bI2 Ks22 eta2 524
 b21 W2 Ksll etal S13 0 b2 Ks22 eta2 $24 + b21 u° Ks12 eta2 S21 0 b12 Ks21 etal 514
521 w2 KsI2 eta2 S23 0 b2 Ks21 etal S14+b22 u> K21 0 phil b1l KsI2 eta2 524
122 u3 K21 0 phi2 b1 Ksl1 etal S14+b22 u® K238 phil bl1 Ks12 eta2 24
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+b22 u? K230 phi2 b1l Ksll etal S14 + b22 w3 Ks21 etal S110 b1 Ks12 eta? S24
+ b22 w? Ks21 etal S130 b11 KsI2 eta2 S24 + b22 w3 K522 eta2 $21 0 b1 Ksl1 etal S14

+ b22 w? Ks22 eta2 S23 0 b11 Ksi1 etal S14 + Md phil bll Ksl2 eta2 524

+Md phi2 bl1 Ksll1 etal S14 + Md phil bl2 Ks22 eta? S24 + Md phi2 bi2 Ks21 etal S14>/(
b21 Ksl2 eta2 S24 phil + b21 Ksll etal S14 phi2 + b22 Ks22 eta2 S24 phil

+b22 Ks21 etal S14 phi2)
> isolate(EQ3, theta);
0 = (Fd phil b21 Ks12 eta2 S24 + Fd phi2 b21 Ksl1 etal S14 + Fd phil b22 Ks22 eta2 S24
+ Fd phi2 b22 Ks21 etal S14 — Md phil bll Ks12 eta2 S24 — Md phi2 bl1 Ks11 etal S14

— Md phil bl2 Ks22 eta2? S24 — Md phi2 bi2 Ks21 etal S14)/<

b11 w3 Ksll etal SI11b22 Ks22 eta? $24 - b11 u> K11 phil b22 Ks22 eta2 24

_ b1 u3 Ks12 eta2 S21 b22 Ks21 etal S14 — b1] u? Ksi2 eta2 $23 b22 Ks21 etal S14
—all u? phil b21 Ks12 eta2 $24 — b11 u® Ks11 etal S13 b22 Ks22 eta2 S24

— b1l u3 K11 phi2 b22 Ks21 etal S14 - b11 u® K13 phil b22 Ks22 eta2 524

— b1 u K13 phi2 b22 Ks21 etal S14 — al3 phi2 b21 Ksl1 etal S14

—all u? phi2 b21 Ksl1 etal S14 - all u® phil b22 K522 eta2 524

_all u? phi2 b22 Ks21 etal S14 — al3 phil b21 Ks12 eta2 524

— b12 u? K23 phi2 b21 Ks11 etal S14 — al3 phil b22 K522 eta2 $24

— al3 phi2 b22 Ks21 etal S14 - b12 u” K21 phil b21 Ks12 eta2 524

_ b2 u3 K21 phi2 b21 Ks11 etal S14 — b12 u® K23 phil b21 Ks12 eta2 S24

+a2l u? phi2 b12 Ks21 etal S14 + a23 phil b1l Ksl12 eta2 524

+a23 phi2 b11 Ksl1 etal S14 - b12 u” K521 etal S11 b21 Ks12 eta2 S24

-bl2 u2 Ks21 etal S13 b21 Ks12 eta2 S24 —bi2 u3 Ks22 eta2 S21 b21 Ksll etal S14
-bl2 u? Ks22 eta2 $23 b21 Ksl1 etal S14 + a2l u2 phil b1l Ks12 eta2 S24

+a2] u? phi2 b11 Ksl1 etal S14+ a2] u® phil bi2 K522 eta2 S24

+ 521 u3 K512 eta2 S21 b12 Ks21 etal S14+ b21 u? KsI2 eta2 S23 b2 Ks21 etal SI4

+ 522 u3 K21 phil b1 KsI2 eta2 524 + b22 u> K21 phi2 b1 Ks11 etal S14
+a23 phil b12 K522 eta2 S24 + a23 phi2 b12 Ks21 etal S14

+b21 u3 K11 phil b2 Ks22 eta2 §24 + b21 u> K11 phi2 b12 Ks21 etal S14
+b21 u? K13 phil bI2 Ks22 eta2 $24 + b21 u® K13 phi2 b12 Ks21 etal S14
w521 ud Ksl1 etal SI1b12 Ks22 eta2 S24 + b21 u? Ks11 etal S13 b2 Ks22 eta2 S24
+ 522 u? K23 phil bl1 Ks12 eta2 $24 + b22 u® K23 phi2 b1 Ks11 etal S14
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+ b22 u3 Ks21 etal S11 b1l Ksl2 eta2 §24 + b22 u2 Ks21 etal S13bl11 Ksl2 eta2 S24

+b22 w3 Ks22 eta2 $21 b11 Ksl1 etal S14 + b22 u? Ks22 eta2 S23 b11 Ks11 etal S]4)

Find the steady state value of theta by setting EQ3=0
> thetass:=simplify(coeff(collect(EQ3,theta),theta,0)/coeff(collect(EQ3,theta),
> theta,l1l));

thetass = (Md phi2 bl1 Ks11 etal S14 + Md phil bl2 Ks22 eta2 524
+ Md phi2 b12 Ks21 etal S14 — Fd phil b2] Ks12 eta2 S24 + Md phil b1l Ks12 eta2 S24

— Fd phil b22 Ks22 eta2 524 — Fd phi2 b22 Ks21 etal S14 — Fd phi2 b21 Ks11 etal S]4)/<
b11 u3 Ksll etal S11b22 Ks22 eta2 S24  b11 u° K11 phil b22 Ks22 eta2 §24

b1 u3 KsI2 eta2 S21 b22 Ks21 etal S14 - bl u® Ks12 eta2 S23 b22 Ks21 etal S14
_ all u® phil b21 KsI2 eta2 S24 — b11 u” K11 etal SI3 b22 K522 eta2 S24

_ b1 u3 K11 phi2 b22 K521 etal S14 - b11 u® K13 phil b22 Ks22 eta2 §24

-bll u2 K13 phi2 b22 Ks21 etal S14 —al3 phi2 b21 Ks11 etal S14

—all uz phi2 b21 Ksl1 etal S14—all u? phil b22 Ks22 eta2 524

— all u? phi2 b22 K521 etal S14—al3 phil b21 Ksi2 eta2 524

— b2 u? K23 phi2 b21 Ks11 etal S14 — al3 phil b22 Ks22 eta2 524

_ al3 phi2 b22 K521 etal S14— b2 u® K21 phil b21 Ks12 eta2 S24

— b12 u3 K21 phi2 b21 Ks11 etal S14 - b12 u® K23 phil b21 Ks12 eta2 $24

+ a2l u2 phi2 bl2 Ks21 etal S14 +a23 phil bl1 Ks12 eta? 524

+ a23 phi2 b11 Ksl1 etal S14 - bI2 u° Ks21 etal S11 b2 KsI2 eta2 524

_ 12 w2 K521 etal SI3 b2] Ks12 eta2 S24 — b12 u> Ks22 eta2 521 b21 Ks11 etal S14
-bl2 u2 Ks22 eta2 S23 b21 Ksll etal S14 + a2l u2 phil b1l KsI2 eta2 S24

+ a2 u® phi2 b11 Ksl1 etal S14+a21 u® phil b12 Ks22 eta2 S24
v b21 13 KsI2 eta2 S21 b12 Ks21 etal S14+b21 u® KsI2 eta2 $23 b12 Ks21 etal S14

+ b22 w3 K21 phil b1l Ks12 eta2 S24 + b22 W3 K21 phi2 bll Ksl1 etal S14
+a23 phil b12 Ks22 eta2 524 + a23 phi2 b12 Ks21 etal S14

+b21 u3 K11 phil bI2 Ks22 eta2 $24 + b21 u° K11 phi2 b12 Ks21 etal S14

+ 21 u? K13 phil bi2 K522 eta2 $24 + b21 u® K13 phi2 b12 Ks21 etal S14

w521 w3 Ksll etal S11 b12 Ks22 eta2 S24 + b21 u® Ksl1 etal S13 b2 Ks22 eta2 524
+b22 w? K23 phil b1l KsI2 eta2 §24 + b22 uW? K23 phi2 b1l Ksl1 etal S14

w522 w3 Ks21 etal S11 b11 Ksl2 eta2 S24 +b22 u? Ks21 etal S13 b1 KsI2 eta2 S24
522 u3 K522 eta2 S21 b11 Ksl1 etal S14 +b22 u® Ks22 eta2 S23 b11 Ksl1 etal si4)

_Substitute thetass into EQ1 and solve for steady state z
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> temp:=coeff (collect(EQLl,z),z,0)/coeff(collect(EQLl,z),2z,1);

temp = (a]] 0 w?+al3®

4 bl u2(K119u+K136+KS” etal (SI16u+S130) +KsJZ(ztczZ(SZIG)u+5239))

phil phi2
Cb12 42 (KZ] 0 u+ k2304 K52 etal (S]h]'Je utS136) Ks22 eta2 (Silge u+S23 e)j
‘ pni pni

)|

2 ( Ksll etal S14 Ksl2 eta2 S24 2( Ks21 etal S14  Ks22 eta2 524
bllu - + - +bl2u - + -
phil phi2 phil phi2

> zss :=
> coeff(collect (temp, theta), theta,l) *thetass+coeff (collect (temp, theta), theta,0)
>

Ksll etal (S11u+S13) N Ksi2 eta2 (S21 u+ S23)
phil phi2
Ks21 etal (S11u+S13) Ks22eta2 (S2]1 u+S523) 2
- + - +all u”|(
phil phi2
Md phi2 b1l Ksl1 etal S14 + Md phil b12 Ks22 eta2 S24 + Md phi2 b12 Ks21 etal S14
— Fd phil b21 KsI2 eta2 §24 + Md phil bl1 Ks12 eta2 S24 — Fd phil b22 Ks22 eta2 §24

255 = (a]3+ b1l u? (K]] u+KI3+

+b12 u? (KZ] u+ K23+

~ Fd phi2 b22 Ks21 etal S14 — Fd phi2 b21 Ksl1 etal S]4)/[

(b” 2 ( Ksll erg] S14  KsI2 etfzz S24)+ b2 w2 ( Ks21 etal S14 , Ks22 ezgz 524 D(
phil phi2 phil phi2

b1 u3 Ks11 etal SI1b22 Ks22 eta2 $24 - b11 u> K11 phil b22 K522 eta2 524

— b1l u3 Ksl2 eta2 $21 b22 Ks21 etal S14—bl1 u? KsI2 eta2 S23 b22 Ks21 etal S14

—all u? phil b21 Ks12 eta2 S24 — bll w? Ksll etal S13 b22 Ks22 eta2 S24

_bl1 W3 KII phi2 b22 Ks21 etal S14 - bl1 Wr K13 phil b22 Ks22 eta2 S24

—bI1u®KI3 phi2 b22 Ks21 etal S14 — al3 phi2 b21 Ksl1 etal 514

—all u2 phi2 b21 Ksll1 etal S14—all u2 phil b22 Ks22 eta2 §24

—-all u? phi2 b22 Ks21 etal S14 —al3 phil b21 KsI2 eta2 524

~ bI2 u? K23 phi2 b21 Ksl1 etal S14 — al3 phil b22 Ks22 eta2 $24

—al3 phi2 b22 Ks21 etal S14 - bI2 W3 K21 phil b21 Ks12 eta? $24

—bI2 W3 K21 phi2 b21 Ksll etal S14—b12 W2 K23 phil b21 Ks12 eta2 §24

+ a2l u? phi2 b12 Ks21 etal S14 +a23 phil bll Ks12 eta2 S24

+a23 phi2 bl1 Ksll etal SI14 - bI2 w3 Ks21 etal S11b21 Ksi2 eta2 S24

-bl2 u2 Ks21 etal S13 b21 Ksi12 eta2 S24 — bi2 u3 Ks22 eta2 S21 b21 Ksll etal S14
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— b12 u? K522 eta2 S23 b21 Ks11 etal S14 +a2] u” phil bl1 Ksi2 eta2 S24
+a2] u? phi2 b11 Ksl1 etal S14+a21 u” phil bI2 Ks22 eta2 524
+b21 u3 Ksl12 eta2 S21 bl12 Ks21 etal S14 + b21 u2 Ksl12 eta2 S23 bl12 Ks21 etal S14

+ 522 u3 K21 phil b1l Ksi12 eta2 S24 + b22 w3 K21 phi2 b1l Ksll etal S14
+a23 phil b12 Ks22 eta2 S24 + a23 phi2 b12 Ks21 etal S14

+b21 u3 K11 phil b12 Ks22 eta2 S24 + b21 u K11 phi2 b12 Ks21 etal S14
+ 521 u? K13 phil b2 Ks22 eta2 S24 + b21 u® K13 phi2 b12 Ks21 etal S14
+ 521 u3 Ksil etal S11b12 Ks22 eta2 §24 +b21 u® Ksl1 etal S13 b12 Ks22 eta2 524
+ 522 u? K23 phil b11 KsI2 eta2 524 + b22 u® K23 phi2 b11 Ks11 etal 514
+ 522 u3 Ks21 etal S11b11 Ks12 eta2 S24 + b22 u® Ks21 etal S13 b1 Ks12 eta2 $24

+ 522 13 Ks22 eta2 S21 b1 Ksll etal S14+b22 u® Ks22 eta2 S23 bl1 Ksl1 etal 514))

Fd

2 eta2 S24
b1l w2 Ksll etg] S14  Ksl2 etgz 524)+ 12 42 ( Ks21 erg] 514 Ks2 eta S )
phil phi2 phil phi2

Determine the coefficients Cl and C2 such that zss=Cl*Fd+C2*Md
> Cl:= simplify(coeff (collect (expand(zss),h Fd) ,Fd,1));

1 =- (2 phi2? phil al3 b22 Ks21 etal S14+2 phi2 phil* al3 b21 Ks12 eta2 524
+2 phi2 phil? al3 b22 Ks22 eta2 S24 +2 phi2? phil al3 b21 Ks11 etal 514
+ phi2 phil® b11 u3 K11 b21 Ks12 eta2 S24 + 2 phi2 phil® b11 u> K11 b22 K522 eta2 S24

+

4 phi2 phil bI1 u® Ksi1 etal S13b21 Ksi2 eta2 524

+2 phi2 phil b11 u? Ksl1 etal S13 b22 K522 eta2 $24

+ 2 phi2 phil bll u3 Ksll etal S11 b22 Ks22 eta2 S24

+2 phi2? phil bi1 u? K13 b22 Ks21 etal S14+ phi2® phil b11 u® K13 b21 Ks11 etal S14
2 phi2 phil® b1 u® K13 b22 Ks22 eta2 S24 + phi2? phil b11 u® K11 b21 Ks11 etal SI14
+ phi2 phil b11 u> Ksi1 etal S11b21 KsI2 eta2 524

+ phi2 phil® b11 u? K13 b21 Ksi2 eta2 $24 + 2 phi2® phil b11 u® K11 622 Ks21 etal SI14
+2 phi2 phil b1l u3 Ksi2 eta2 §21 b22 Ks21 etal S14

+ phi2 phil b1l 13 Ks12 eta2 S21 b21 Ksl1 etal S14

+ phi2 phil bl u® Ksi2 eta2 S23 b21 Ksl1 etal S14

+2 phi2 phil bl] u® Ksi2 eta2 523 b22 Ks21 etal S14

+2 phi2 phil® b12 u K21 b21 Ks12 eta2 S24

+2 phi2 phil b12 u° Ks21 etal S11b21 K12 eta2 S24
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2
3
2

2 K23 b21 Ksl2 eta2 S24

K21 b22 Ks21 etal S14
K23 b21 Ksll etal S14

+ phi2 phil® b12 u® K23 b22 Ks22 eta2 24 + 2 phi2 phil> b12 u
+2 phi2? phil b12 w3 K21 b21 Ks11 etal S14+ phi2? phil b12 u
+ phi2 phil% b12 u3 K21 b22 K522 eta2 S24 + 2 phi2? phil b2 u
+ phi2? phil b12 u® K23 b22 Ks21 etal S14

+ phi2 phil b12 u® Ks21 etal S13 b22 K522 eta2 $24

+2 phi2 phil b2 u® Ks21 etal SI3 b21 Ksi2 eta2 524

+ phi2 phil bI12 u3 Ks21 etal S11b22 Ks22 eta2 S24

+ phi2 phil bi2 w3 Ks22 eta2 S21 b22 Ks21 etal S14

+2 phi2 phil bI2 u> Ks22 eta2 S21 b21 Ks11 etal S14

+ phi2 phil bi2 u? Ks22 eta2 S23 b22 Ks21 etal S14

+ 2 phi2 phil bi2 w2 Ks22 eta2 $23 b21 Ksl1 etal S14

+2 phi2 phil? all u? b21 Ks12 eta2 S24 +2 phi2 phil* all u® b22 Ks22 eta2 S24

+2 phi2? phil all u® b22 Ks21 etal S14+ 2 phi2? phil all u® b21 Ks11 etal S14

+ phi2? b11 u3 Ksl1 etal? S11b22 Ks21 S14 + phi2® b11 u> Ks11? etal® S11 b21 S14
+ phil? b11 1% Ks122 e1a2? 523 b21 524 + phil 2 b11 u® Ks12 eta2® 523 b22 K522 524
+ phi2? b11 u? K11 etal® $13 b22 K521 S14 + phi2? b11 u® Ks11? etal® S13 b21 S14
+phil2 b11 u3 Ks12? eta2? 521 b21 S24 + phil® b11 u> Ks12 eta2? 521 b22 K522 524
+ phi2? b12 u? K5212 etal® S13 522 S14 + phi2® b12 u® Ks21 etal® S13 b21 Ks11 S14
+ phil? b12 13 K522 eta2? 521 b21 Ks12 S24 + phil® b12 u> Ks22? eta2® S21 b22 524
4 phi2? b12 u3 Ks21? etal® S11b22 S14 + phi2® bI2 u> K521 etal® S11 621 Ks11 S14
+ phil? b12 u® Ks22 eta2? 523 b21 K512 524 + phil® b12 u> K522? eta2? 523 b22 524
— phi2? phil a2] u® b12 Ks21 etal SI14 — phi2 phil* a23 b11 Ks2 eta2 524

_ phi2? phil a23 bll Ksl1 etal S14 - phi2 phil> a21 u® b11 Ks12 eta2 524

— phi2? phil a21 u? b11 Ks11 etal S14 - phi2 phil* a21 u? b12 Ks22 eta2 S24

— phi2 phil b21 u> KsI2 eta2 $21 b12 Ks21 etal S14

— phi2 phil b21 u? KsI2 eta2 S23 b2 Ks21 etal S14

— phi2 phil® b22 u3 K21 b11 K512 eta2 524 — phi2? phil b22 u> K21 b11 Ks11 etal S14
- phi2 phi12 a23 b12 Ks22 eta2 524 —phi22 phil a23 b12 Ks21 etal S14

— phi2 phil% b21 u3 K11 b2 K522 eta2 24 — phi2? phil b21 v K11 b12 K521 etal S14
— phi2 phil2 b21 u? K13 b12 K522 eta2 524 — phi2? phil b21 u® K13 b12 Ks21 etal S14
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— phi2 phil b21 w3 Ksll etal S11 b12 Ks22 eta2 S24

— phi2 phil b21 w? Ksll etal S13 b12 Ks22 eta2 S24

— phi2 phi]2 b22 u? K23 b1l Ks12 eta2 S24 —phi22 phil b22 w? K23 b11 Ksll etal S14
— phi2 phil b22 u3 Ks21 etal S11 b1l Ksi2 eta2 524

— phi2 phil b22 w? Ks21 etal S13 b11 Ks12 eta2 524

— phi2 phil b22 w3 Ks22 eta2 S21 b1l Ks11 etal S14

— phi2 phil b22 u? Ks22 eta2 S23 b11 Ksl1 etal S]4>/<u2 (phil b1l Ks12 eta2 §24

+ phi2 b11 Ks11 etal SI14 + phil b12 Ks22 eta2 S24 + phi2 b12 Ks21 etal S14) (

11 w3 Ksll etal S11b22 K522 eta2 S24 — b11 u> K11 phil b22 Ks22 eta2 524

-bll u3 Ksi2 eta2 §21 b22 Ks21 etal S14—-bll u2 Ks12 eta? S23 b22 Ks21 etal S14
— all u? phil b21 KsI2 eta2 S24 — b1 1 u® Ksl1 etal SI3 b22 K522 eta2 S24

b1l u3 K11 phi2 b22 K521 etal S14 - b11 u® K13 phil b22 Ks22 eta2 S24

—b11 u? K13 phi2 b22 K521 etal S14 — al3 phi2 b21 Ks11 etal S14

—all u? phi2 b21 Ksl1 etal S14 —all u? phil b22 Ks22 eta? 524

—all u2 phi2 b22 Ks21 etal S14 — al3 phil b21 KsI2 eta2 524

_ b12 u? K23 phi2 b21 Ks11 etal S14 — al3 phil b22 K522 eta2 $24

— al3 phi2 b22 Ks21 etal S14 - b12 u> K21 phil b21 Ks12 eta2 $24

— b12 u3 K21 phi2 b21 Ks11 etal SI4 - bI2 u® K23 phil b21 Ks12 eta2 524

+a21 u® phi2 b2 Ks21 etal S14+ a23 phil b1l KsI2 eta2 524

+ a23 phi2 b11 Ks11 etal S14 - bI2 u> Ks21 etal S11 b21 KsI2 eta2 524

—b12 u2 K521 etal S13 b21 Ksl2 eta2 $24 — b12 u> Ks22 eta2 S21 b21 Ks11 etal S14
12 w2 K522 eta? S23 b21 Ks11 etal S14+a2] u” phil bl1 KsI2 eta2 524

+a2l u? phi2 bl1 Ksl1 etal S14 + a2l u2 phil bl2 Ks22 eta2 S24

w21 13 K512 eta2 S21 b12 Ks21 etal S14+b21 u® Ksi2 eta2 S23 b12 Ks21 etal S14

+ b22 u3 K21 phil b11 Ks12 eta2 S24 + b22 u> K21 phi2 b11 Ks11 etal S14
+a23 phil bl12 Ks22 eta2 S24 + a23 phi2 b12 Ks21 etal S14

+ b21 13 K11 phil bi2 Ks22 eta2 $24 + b21 u® K11 phi2 b12 Ks21 etal S14
+ b27 u® K13 phil bi2 K522 eta2 S24+b21 u® K13 phi2 b12 K521 etal SI4
+ b21 u3 Ksll etal S11b12 Ks22 eta2 S24 + b21 u2 Ksll etal S13 b12 Ks22 eta2 524
+b22 w2 K23 phil b1l Ks12 eta2 §24 + b22 u? K23 phi2 bll Ksll etal S14
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+b22 u3 Ks21 etal S11 b1l Ksl2 eta2 524 + b22 u2 Ks21 etal S13 b11 Ksl2 eta2 S24
+ b22 u3 Ks22 eta2 S21 b1l Ksll etal S14 + b22 u?‘ Ks22 eta2 S23 b1l Ksl1 etal S]4>>

> C2:= simplify(coeff(collect (expand(zss),Md) , Md, 1)) ;

2 = (Ks11 etal phi2 b11 w3 S11+ Ksl1 etal phi2 b1 u® S13 + etal phi2 u® S13 b12 Ks21
+ etal phi2 u3 S11 b12 Ks21 + phi2 b11 phil u> K11+ phi2 b11 phil u® K13 + phi2 phil al3
+ phi2 phil b12 u? K23 + phi2 phil all u* + phi2 phil b2 u> K21
+ bll phil w3 Ksl2 eta2 S21 +bl1 phil u? Ks12 eta2 523 + phil b2 u? K522 eta2 $23
+ phil b12 u3 Ks22 eta2 s21) / ((_b11 u3 Ks11 etal S11 b22 Ks22 eta2 524

b1 u3 K11 phil b22 Ks22 eta2 $24 — b11 u® KsI2 eta2 $21 b22 Ks21 etal S14
b1 u2 Ksl2 eta2 S23 b22 Ks21 etal S14 - all u® phil b21 Ks12 eta2 S24
bl w2 Ksll etal SI13 b22 Ks22 eta2 S24 — b1 u> K11 phi2 b22 Ks21 etal S14
_ b11 W% KI3 phil b22 Ks22 eta2 S24 — b11 u® K13 phi2 b22 Ks21 etal 514
—al3 phi2 b21 Ksl1 etal S14—all u? phi2 b21 Ks11 etal S14

_ a1l u? phil b22 K522 eta2 524 — all u® phi2 b22 Ks21 etal S14

—al3 phil b21 Ks12 eta2 524 - bi2 u? K23 phi2 b21 Ksl1 etal S14
— al3 phil b22 Ks22 eta2 S24 — al3 phi2 b22 Ks21 etal S14

_ 112 u3 K21 phil b21 Ks12 eta2 §24 - b12 u® K21 phi2 b21 Ks11 etal S14

_ b12 w2 K23 phil b21 Ks12 eta2 S24 + a21 u® phi2 b12 Ks21 etal SI4
+a23 phil bll Ks12 eta2 §24 + a23 phi2 bl1 Ksl1 etal S14

12 u3 Ks21 etal S11b21 Ks12 eta2 S24 — b2 u® Ks21 etal S13 b21 Ks12 eta2 $24
b2 13 Ks22 eta2 S21 b21 Ks11 etal S14 - b12 u® Ks22 eta2 S23 b21 Ks11 etal S14
+a2l u? phil b1l Ksi2 eta2 S24 + a2l u? phi2 bl1 Ksll etal S14

+a2l u? phil bi2 Ks22 eta2 §24 + b21 w3 Ks12 eta2 S21 b12 Ks21 etal S14

e b1 w2 Ksl2 eta2 S23 b12 Ks21 etal S14 +b22 u> K21 phil b11 Ks12 eta2 524

+ 122 u3 K21 phi2 b11 Ksl1 etal S14 + a23 phil b12 Ks22 eta2 S24

+ 023 phi2 b12 Ks21 etal S14+b21 u K11 phil b12 K522 eta2 $24

+ b21 W3 K11 phi2 b12 Ks21 etal S14+b21 u? K13 phil bI2 Ks22 eta2 524

© b21 W2 K13 phi2 b12 Ks21 etal S14+b21 u> Ksl1 etal S11 b12 K522 eta2 524
b2 u2 Ksl] etal S13 b12 Ks22 eta2 S24 + 22 u® K23 phil b1l Ks12 eta2 524

1 522 u2 K23 phi2 b11 Ks1 etal S14+b22 u> Ks21 etal S11 b1 Ks12 eta2 524
b2 2 Ks21 etal S13 b11 Ks12 eta2? S24 +b22 u” Ks22 eta2 S21 b11 Ks11 etal S14
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+ b22 u? K522 eta2 S23 b1 Ksl1 etal s14)u?)

Check that z5s=C1*Fd+C2*Md
> eq6:=sirnplify(zss—Cl*Fd—C2*Md);

eq6 =0
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